2020-12-29 04:53:13 -08:00
#!/usr/bin/env sage
2020-12-30 19:35:50 -08:00
# Simplified SWU for a = 0 as described in [WB2019] <https://eprint.iacr.org/2019/403> and
2020-12-29 04:53:13 -08:00
# <https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html#name-simplified-swu-for-ab-0-2>.
import sys
from math import ceil , log
from struct import pack
import hashlib
if sys . version_info < ( 3 , 6 ) :
try :
import sha3
except ImportError :
print ( ' Please run: \n `sage -c " import sys; print(sys.executable) " ` -m pip install pysha3 \n ' )
raise
from hashlib import shake_128
if sys . version_info [ 0 ] == 2 :
range = xrange
as_byte = ord
else :
as_byte = lambda x : x
2020-12-30 19:35:50 -08:00
load ( ' squareroottab.sage ' )
2020-12-29 04:53:13 -08:00
class Cost :
def __init__ ( self , sqrs = 0 , muls = 0 , invs = 0 ) :
self . sqrs = sqrs
self . muls = muls
self . invs = invs
def sqr ( self , x ) :
self . sqrs + = 1
return x ^ 2
def mul ( self , x , y ) :
self . muls + = 1
return x * y
def div ( self , x , y ) :
self . invs + = 1
self . muls + = 1
return x / y
2020-12-29 09:52:35 -08:00
def batch_inv0 ( self , xs ) :
2020-12-29 04:53:13 -08:00
self . invs + = 1
2020-12-29 09:52:35 -08:00
self . muls + = 3 * ( len ( xs ) - 1 )
# This should use Montgomery's trick (with constant-time substitutions to handle zeros).
return [ 0 if x == 0 else x ^ - 1 for x in xs ]
2020-12-29 04:53:13 -08:00
def sqrt ( self , x ) :
self . sqrs + = 247
self . muls + = 35
2020-12-30 19:35:50 -08:00
( res , _ , _ ) = F_p . sarkar_sqrt ( x )
return res
2020-12-29 04:53:13 -08:00
def __add__ ( self , other ) :
return Cost ( self . sqrs + other . sqrs , self . muls + other . muls , self . invs + other . invs )
def __repr__ ( self ) :
return " %d S + %d M + %d I " % ( self . sqrs , self . muls , self . invs )
# E: a short Weierstrass elliptic curve
def find_z_sswu ( E ) :
( 0 , 0 , 0 , A , B ) = E . a_invariants ( )
F = E . base_field ( )
R . < x > = F [ ] # Polynomial ring over F
g = x ^ 3 + F ( A ) * x + F ( B ) # y^2 = g(x) = x^3 + A * x + B
ctr = F . gen ( )
while True :
for Z_cand in ( F ( ctr ) , F ( - ctr ) ) :
2020-12-30 19:35:50 -08:00
if is_good_Z ( F , g , A , B , Z_cand ) :
2020-12-29 04:53:13 -08:00
return Z_cand
ctr + = 1
2020-12-30 19:35:50 -08:00
def is_good_Z ( F , g , A , B , Z ) :
# Criterion 1: Z is non-square in F.
if Z . is_square ( ) :
return False
2020-12-29 04:53:13 -08:00
2020-12-30 19:35:50 -08:00
# Criterion 2: Z != -1 in F.
if Z == F ( - 1 ) :
return False
# Criterion 3: g(x) - Z is irreducible over F.
if not ( g - Z ) . is_irreducible ( ) :
return False
# Criterion 4: g(B / (Z * A)) is square in F.
if not g ( F ( B ) / ( Z * F ( A ) ) ) . is_square ( ) :
return False
return True
assert p == 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
assert q == 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001
Fp = GF ( p )
Fq = GF ( q )
2020-12-31 05:45:35 -08:00
E_isop_A = 10949663248450308183708987909873589833737836120165333298109615750520499732811
E_isoq_A = 17413348858408915339762682399132325137863850198379221683097628341577494210225
E_isop_B = 1265
E_isoq_B = 1265
E_isop = EllipticCurve ( Fp , [ E_isop_A , E_isop_B ] )
E_isoq = EllipticCurve ( Fq , [ E_isoq_A , E_isoq_B ] )
E_p = EllipticCurve ( Fp , [ 0 , 5 ] )
E_q = EllipticCurve ( Fq , [ 0 , 5 ] )
2020-12-29 04:53:13 -08:00
k = 128
2020-12-30 19:35:50 -08:00
Lp = ( len ( format ( p , ' b ' ) ) + k + 7 ) / / 8
Lq = ( len ( format ( q , ' b ' ) ) + k + 7 ) / / 8
assert Lp == 48 and Lq == 48
L = Lp
2020-12-31 05:45:35 -08:00
Z_isop = find_z_sswu ( E_isop )
Z_isoq = find_z_sswu ( E_isoq )
assert Z_isop == Mod ( - 13 , p )
assert Z_isoq == Mod ( - 13 , q )
2020-12-30 19:35:50 -08:00
2020-12-31 05:45:35 -08:00
h_p = F_p . g
h_q = F_q . g
2020-12-29 04:53:13 -08:00
def select_z_nz ( s , ifz , ifnz ) :
# This should be constant-time in a real implementation.
return ifz if ( s == 0 ) else ifnz
2020-12-31 05:45:35 -08:00
def map_to_curve_simple_swu ( E , Z , h , us , c ) :
2020-12-29 04:53:13 -08:00
# would be precomputed
( 0 , 0 , 0 , A , B ) = E . a_invariants ( )
mBdivA = - B / A
BdivZA = B / ( Z * A )
2020-12-29 09:52:35 -08:00
Z2 = Z ^ 2
2020-12-31 05:45:35 -08:00
assert ( Z / h ) . is_square ( )
theta = sqrt ( Z / h )
2020-12-29 04:53:13 -08:00
# 1. tv1 = inv0(Z^2 * u^4 + Z * u^2)
2020-12-29 09:52:35 -08:00
# = inv0((Z^2 * u^2 + Z) * u^2)
u2s = [ c . sqr ( u ) for u in us ]
tas = [ c . mul ( ( Z2 * u2 + Z ) , u2 ) for u2 in u2s ]
tv1s = c . batch_inv0 ( tas )
Qs = [ ]
for i in range ( len ( us ) ) :
( u , u2 , tv1 ) = ( us [ i ] , u2s [ i ] , tv1s [ i ] )
# 2. x1 = (-B / A) * (1 + tv1)
# 3. If tv1 == 0, set x1 = B / (Z * A)
x1 = select_z_nz ( tv1 , BdivZA , mBdivA * ( 1 + tv1 ) )
# 4. gx1 = x1^3 + A * x1 + B
# = x1*(x1^2 + A) + B
x1_2 = c . sqr ( x1 )
gx1 = c . mul ( x1 , x1_2 + A ) + B
# 5. x2 = Z * u^2 * x1
2020-12-31 05:45:35 -08:00
Zu2 = Z * u2 # Z is small
2020-12-30 19:35:50 -08:00
x2 = c . mul ( Zu2 , x1 )
2020-12-29 09:52:35 -08:00
2020-12-30 19:35:50 -08:00
# 6. gx2 = x2^3 + A * x2 + B [optimized out; see below]
2020-12-29 09:52:35 -08:00
# 7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
# 8. Else set x = x2 and y = sqrt(gx2)
y1 = c . sqrt ( gx1 )
y1_2 = c . sqr ( y1 )
2020-12-30 19:35:50 -08:00
zero_if_gx1_square = y1_2 - gx1
# This magic comes from a generalization of [WB2019, section 4.2].
#
# here [WB2019]
# ------- ---------------------------------
# Z \xi
# u t
# Z * u^2 \xi * t^2 (called u, confusingly)
# gx1 g(X_0(t))
# gx2 g(X_1(t))
#
# The Sarkar square root algorithm with input s gives us a square root of
2020-12-31 05:45:35 -08:00
# h * s for free when s is not square, provided we choose h to be a generator
2020-12-30 19:35:50 -08:00
# of the order 2^n multiplicative subgroup (where n = 32 for Pallas and Vesta).
2020-12-31 05:45:35 -08:00
# We know that Z/h is a square since both Z and h are nonsquares.
# Precompute \theta as a square root of Z/h, or choose Z = h so that \theta = 1.
2020-12-30 19:35:50 -08:00
#
# We have gx2 = g(Z * u^2 * x1) = Z^3 * u^6 * gx1
2020-12-31 05:45:35 -08:00
# = (Z * u^3)^2 * (Z/h * h * gx1)
# = (Z * \theta * u^3)^2 * (h * gx1)
2020-12-30 19:35:50 -08:00
#
2020-12-31 07:26:20 -08:00
# When gx1 is not square, y1 is a square root of h * gx1, and so Z * \theta * u^3 * y1
2020-12-30 19:35:50 -08:00
# is a square root of gx2. Note that we don't actually need to compute gx2.
2020-12-31 05:45:35 -08:00
y2 = c . mul ( theta , c . mul ( Zu2 , c . mul ( u , y1 ) ) )
2020-12-30 19:35:50 -08:00
if zero_if_gx1_square != 0 :
2020-12-31 05:45:35 -08:00
assert y1_2 == h * gx1 , ( y1_2 , Z , gx1 )
2020-12-30 19:35:50 -08:00
assert y2 ^ 2 == x2 ^ 3 + A * x2 + B , ( y2 , x2 , A , B )
x = select_z_nz ( zero_if_gx1_square , x1 , x2 )
y = select_z_nz ( zero_if_gx1_square , y1 , y2 )
2020-12-29 09:52:35 -08:00
# 9. If sgn0(u) != sgn0(y), set y = -y
y = select_z_nz ( ( int ( u ) % 2 ) - ( int ( y ) % 2 ) , y , - y )
Qs . append ( E ( ( x , y ) ) )
return Qs
2020-12-29 04:53:13 -08:00
# iso_Ep = Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 10949663248450308183708987909873589833737836120165333298109615750520499732811*x + 1265 over Fp
2020-12-29 16:09:26 -08:00
def isop_map_affine ( x , y , c ) :
2020-12-29 04:53:13 -08:00
c . muls + = 2 + 1 + 1 + 2 + 1 + 1 + 2
# batch inversion
c . muls + = 3
c . invs + = 1
2020-12-29 16:09:26 -08:00
Nx = ( ( ( 6432893846517566412420610278260439325191790329320346825767705947633326140075 * x +
23989696149150192365340222745168215001509815558210986772351135915822265203574 ) * x +
10492611921771203378452795982353351666191589197598957448093274638589204800759 ) * x +
12865787693035132824841220556520878650383580658640693651535411895266652280192 )
Dx = ( ( x +
13271109177048389296812780941310096270046944650307955939477485891950613419807 ) * x +
22768321103861051515190775253992702316905399997697804654926324362758820947460 )
Ny = ( ( ( 11793638718615538422771118843477472096184948937087302513907460903994431256804 * x +
11994848074575096182670111372584107500754907779105493386175567957911132601787 ) * x +
28823569610051396102362669851238297121581474897215657071023781420043761726004 ) * x +
1072148974419594402070101713043406554198631721553391137627950991272221023311 ) * y
Dy = ( ( ( x +
5432652610908059517272798285879155923388888734491153551238890455750936314542 ) * x +
10408918692925056833786833257634153023990087029210292532869619559576527581706 ) * x +
28948022309329048855892746252171976963363056481941560715954676764349967629797 )
return ( Nx / Dx , Ny / Dy )
# The same isogeny but in Jacobian coordinates <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>,
2020-12-30 19:35:50 -08:00
# according to "Avoiding inversions" in [WB2019, section 4.3].
2020-12-29 16:09:26 -08:00
def isop_map_jacobian ( x , y , z , c ) :
z2 = c . sqr ( z )
z3 = c . mul ( z , z2 )
z4 = c . sqr ( z2 )
z6 = c . sqr ( z3 )
Nx = ( ( ( 6432893846517566412420610278260439325191790329320346825767705947633326140075 * x +
23989696149150192365340222745168215001509815558210986772351135915822265203574 * z2 ) * x +
10492611921771203378452795982353351666191589197598957448093274638589204800759 * z4 ) * x +
12865787693035132824841220556520878650383580658640693651535411895266652280192 * z6 )
c . muls + = 6
Dx = ( ( z2 * x +
13271109177048389296812780941310096270046944650307955939477485891950613419807 * z4 ) * x +
22768321103861051515190775253992702316905399997697804654926324362758820947460 * z6 )
c . muls + = 4
Ny = ( ( ( 11793638718615538422771118843477472096184948937087302513907460903994431256804 * x +
11994848074575096182670111372584107500754907779105493386175567957911132601787 * z2 ) * x +
28823569610051396102362669851238297121581474897215657071023781420043761726004 * z4 ) * x +
1072148974419594402070101713043406554198631721553391137627950991272221023311 * z6 ) * y
c . muls + = 7
Dy = ( ( ( x +
5432652610908059517272798285879155923388888734491153551238890455750936314542 * z2 ) * x +
10408918692925056833786833257634153023990087029210292532869619559576527581706 * z4 ) * x +
28948022309329048855892746252171976963363056481941560715954676764349967629797 * z6 ) * z3
c . muls + = 6
zo = c . mul ( Dx , Dy )
xo = c . mul ( c . mul ( Nx , Dy ) , zo )
yo = c . mul ( c . mul ( Ny , Dx ) , c . sqr ( zo ) )
assert isop_map_affine ( x / z2 , y / z3 , Cost ( ) ) == ( xo / zo ^ 2 , yo / zo ^ 3 )
return ( xo , yo , zo )
# Unified addition on y^2 = x^3 + Ax + B with affine input and Jacobian output.
# The inputs must not be the point at infinity; the output may be.
def unified_mmadd_jacobian ( A , Px , Py , Qx , Qy , c ) :
# Addition using Jacobian coordinates for general A
# <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-mmadd-2007-bl>
H = Qx - Px
I = 4 * c . sqr ( H )
J = c . mul ( H , I )
r = 2 * ( Qy - Py )
V = c . mul ( Px , I )
# Doubling using Jacobian coordinates for general A
# <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-mdbl-2007-bl>
XX = c . sqr ( Px )
YY = c . sqr ( Py )
YYYY = c . sqr ( YY )
S = 2 * ( c . sqr ( Px + YY ) - XX - YYYY )
M = 3 * XX + A
# Common part between doubling and addition. J = 0 for doubling.
M_or_r = select_z_nz ( H , M , r )
S_or_V = select_z_nz ( H , S , V )
Rx = c . sqr ( M_or_r ) - J - 2 * S_or_V
Ry = c . mul ( M_or_r , S_or_V - Rx ) - select_z_nz ( H , 8 * YYYY , 2 * c . mul ( Py , J ) )
# If Q = -P (i.e. H = 0 and Py + Qy = 0), then the result is the point at infinity, represented by Rz = 0.
U = select_z_nz ( Py + Qy , 0 , Qy )
Rz = 2 * select_z_nz ( H , U , H )
return ( Rx , Ry , Rz )
2020-12-29 04:53:13 -08:00
def expand_message_xof ( msg , DST , len_in_bytes ) :
assert len ( DST ) < 256
len_in_bytes = int ( len_in_bytes )
# This is horrible but matches the reference code.
xof = shake_128 ( )
xof . update ( msg )
xof . update ( pack ( " >H " , len_in_bytes ) )
xof . update ( pack ( " B " , len ( DST ) ) )
xof . update ( DST )
return xof . digest ( len_in_bytes )
def hash_to_field ( msg , DST , count ) :
uniform_bytes = expand_message_xof ( msg , DST , L * count )
return [ Mod ( OS2IP ( uniform_bytes [ L * i : L * ( i + 1 ) ] ) , p ) for i in range ( count ) ]
def OS2IP ( bs ) :
acc = 0
for b in bs :
acc = ( acc << 8 ) + as_byte ( b )
return acc
2020-12-29 16:09:26 -08:00
def hash_to_curve_affine ( msg , DST , uniform = True ) :
2020-12-29 04:53:13 -08:00
c = Cost ( )
2020-12-29 09:52:35 -08:00
us = hash_to_field ( msg , DST , 2 if uniform else 1 )
2020-12-29 04:53:13 -08:00
#print("u = ", u)
2020-12-31 05:45:35 -08:00
Qs = map_to_curve_simple_swu ( E_isop , Z_isop , h_p , us , c )
2020-12-29 04:53:13 -08:00
if uniform :
# Complete addition using affine coordinates: I + 2M + 2S
# (S for x1^2; compute numerator and denominator of the division for the correct case;
# I + M to divide; S + M to compute x and y of the result.)
2020-12-29 09:52:35 -08:00
R = Qs [ 0 ] + Qs [ 1 ]
2020-12-29 04:53:13 -08:00
#print("R = ", R)
c . invs + = 1
c . sqrs + = 2
c . muls + = 2
2020-12-29 09:52:35 -08:00
else :
R = Qs [ 0 ]
2020-12-29 04:53:13 -08:00
# no cofactor clearing needed since Pallas and Vesta are prime-order
( x , y ) = R . xy ( )
2020-12-29 16:09:26 -08:00
P = E_p ( isop_map_affine ( x , y , c ) )
return ( P , c )
def hash_to_curve_jacobian ( msg , DST ) :
c = Cost ( )
us = hash_to_field ( msg , DST , 2 )
#print("u = ", u)
2020-12-31 05:45:35 -08:00
Qs = map_to_curve_simple_swu ( E_isop , Z_isop , h_p , us , c )
2020-12-29 16:09:26 -08:00
R = Qs [ 0 ] + Qs [ 1 ]
#print("R = ", R)
( Q0x , Q0y ) = Qs [ 0 ] . xy ( )
( Q1x , Q1y ) = Qs [ 1 ] . xy ( )
( Rx , Ry , Rz ) = unified_mmadd_jacobian ( E_isop_A , Q0x , Q0y , Q1x , Q1y , c )
assert E_isop ( ( Rx / Rz ^ 2 , Ry / Rz ^ 3 ) ) == R
# no cofactor clearing needed since Pallas and Vesta are prime-order
( Px , Py , Pz ) = isop_map_jacobian ( Rx , Ry , Rz , c )
P = E_p ( ( Px / Pz ^ 2 , Py / Pz ^ 3 ) )
2020-12-29 04:53:13 -08:00
return ( P , c )
2020-12-31 05:45:35 -08:00
print ( hash_to_curve_affine ( " hello " , " blah " , uniform = True ) )
print ( hash_to_curve_jacobian ( " hello " , " blah " ) )
print ( " " )
2020-12-29 04:53:13 -08:00
iters = 100
for i in range ( iters ) :
2020-12-29 16:09:26 -08:00
( R_affine , cost_affine ) = hash_to_curve_affine ( pack ( " >I " , i ) , " blah " , uniform = True )
( R_jacobian , cost_jacobian ) = hash_to_curve_jacobian ( pack ( " >I " , i ) , " blah " )
2020-12-30 19:35:50 -08:00
assert R_affine == R_jacobian # Sage will normalize them
2020-12-29 16:09:26 -08:00
print ( R_affine , cost_affine , cost_jacobian )