pasta/amicable.sage

331 lines
12 KiB
Python
Raw Normal View History

#!/usr/bin/env sage
# -*- coding: utf-8 -*-
import sys
from multiprocessing import Pool, cpu_count
from traceback import print_exc
from itertools import combinations
from string import maketrans
if sys.version_info[0] == 2: range = xrange
# Let Ep/Fp : y^2 = x^3 + bp
# Let Eq/Fq : y^2 = x^3 + bq
# p and q should each be ~ L bits.
DEFAULT_TWOADICITY = 32
DEFAULT_STRETCH = 0
COEFFICIENT_RANGE = (5,)
#COEFFICIENT_RANGE = range(1, 100)
GCD_PRIMES = (5, 7, 11, 13, 17)
# Set to a prime, or 0 to disable searching for isogenies.
ISOGENY_DEGREE_MAX = 3
#ISOGENY_DEGREE_MAX = 37
DEFAULT_TWIST_SECURITY = 120
REQUIRE_PRIMITIVE = True
REQUIRE_HALFZERO = True # nearpowerof2 strategy only
# <https://cryptojedi.org/papers/pfcpo.pdf> section 2:
# [...] the order of a curve satisfying the norm equation 3V^2 = 4p - T^2 has one
# of the six forms {p+1 +/- T, p+1 +/- (T +/- 3V)/2} [IEEE Std 1363-2000, section
# A.14.2.3, item 6].
#
# We choose 4p = 3V^2 + T^2, where (V-1)/2 and (T-1)/2 are both multiples of 2^twoadicity.
#
# Then 4p = (3(V-1)^2 + 6(V-1) + 3) + ((T-1)^2 + 2(T-1) + 1)
# = 3(V-1)^2 + 6(V-1) + (T-1)^2 + 2(T-1) + 4
# p = 3((V-1)/2)^2 + 3(V-1)/2 + ((T-1)/2)^2 + (T-1)/2 + 1
#
# So p-1 will be a multiple of 2^twoadicity, and so will q-1 for q in
# { p + 1 - T, p + 1 + (T-3V)/2 }.
#
# We'd also like both p and q to be 1 (mod 6), so that we have efficient endomorphisms
# on both curves.
def low_hamming_order(L, twoadicity, wid, processes):
Vlen = (L-1)//2 + 1
Vbase = 1 << Vlen
Tlen = (L-1)//4
Tbase = 1 << Tlen
trailing_zeros = twoadicity+1
for w in range(wid, Tlen-trailing_zeros, processes):
for Vc in combinations(range(trailing_zeros, Vlen), w):
V = Vbase + sum([1 << i for i in Vc]) + 1
assert(((V-1)/2) % (1<<twoadicity) == 0)
for Tw in range(1, w+1):
for Tc in combinations(range(trailing_zeros, Tlen), Tw):
T = Tbase + sum([1 << i for i in Tc]) + 1
assert(((T-1)/2) % (1<<twoadicity) == 0)
if T % 6 != 1:
continue
p4 = 3*V^2 + T^2
assert(p4 % 4 == 0)
p = p4//4
assert(p % (1<<twoadicity) == 1)
if p % 6 == 1 and is_pseudoprime(p):
yield (p, T, V)
def near_powerof2_order(L, twoadicity, wid, processes):
trailing_zeros = twoadicity+1
Vbase = isqrt((1<<(L+1))//3) >> trailing_zeros
for Voffset in symmetric_range(100000, base=wid, step=processes):
V = ((Vbase + Voffset) << trailing_zeros) + 1
assert(((V-1)/2) % (1 << twoadicity) == 0)
tmp = (1<<(L+1)) - 3*V^2
if tmp < 0: continue
Tbase = isqrt(tmp) >> trailing_zeros
for Toffset in symmetric_range(100000):
T = ((Tbase + Toffset) << trailing_zeros) + 1
assert(((T-1)/2) % (1<<twoadicity) == 0)
if T % 6 != 1:
continue
p4 = 3*V^2 + T^2
assert(p4 % 4 == 0)
p = p4//4
assert(p % (1<<twoadicity) == 1)
if REQUIRE_HALFZERO and p>>(L//2) != 1<<(L - 1 - L//2):
continue
if p > 1<<(L-1) and p % 6 == 1 and is_pseudoprime(p):
yield (p, T, V)
def symmetric_range(n, base=0, step=1):
for i in range(base, n, step):
yield -i
yield i+1
SWAP_SIGNS = maketrans("+-", "-+")
def find_nice_curves(strategy, L, twoadicity, stretch, requireisos, sortpq, twistsec, wid, processes):
for (p, T, V) in strategy(L, max(0, twoadicity-stretch), wid, processes):
if p % (1<<twoadicity) != 1:
continue
sys.stdout.write('.')
sys.stdout.flush()
for (q, qdesc) in ((p + 1 - T, "p + 1 - T"),
(p + 1 + (T-3*V)//2, "p + 1 + (T-3*V)/2")):
if strategy == near_powerof2_order and REQUIRE_HALFZERO and q>>(L//2) != 1<<(L - 1 - L//2):
continue
if q not in (p, p+1, p-1) and q > 1<<(L-1) and q % 6 == 1 and q % (1<<twoadicity) == 1 and is_prime(q) and is_prime(p):
if sortpq and q < p:
(p, q) = (q, p)
qdesc = qdesc.translate(SWAP_SIGNS)
(Ep, bp) = find_curve(p, q)
if bp == None: continue
(Eq, bq) = find_curve(q, p, (bp,))
if bq == None: continue
sys.stdout.write('*')
sys.stdout.flush()
primp = (Mod(bp, p).multiplicative_order() == p-1)
if REQUIRE_PRIMITIVE and not primp: continue
primq = (Mod(bq, q).multiplicative_order() == q-1)
if REQUIRE_PRIMITIVE and not primq: continue
(twsecp, twembedp) = twist_security(p, q)
if twsecp < twistsec: continue
(twsecq, twembedq) = twist_security(q, p)
if twsecq < twistsec: continue
(secp, embedp) = curve_security(p, q)
(secq, embedq) = curve_security(q, p)
zetap = GF(p).zeta(3)
zetap = min(zetap, zetap^2)
assert(zetap**3 == Mod(1, p))
zetaq = GF(q).zeta(3)
P = Ep.gens()[0]
zP = endo(Ep, zetap, P)
if zP != int(zetaq)*P:
zetaq = zetaq^2
assert(zP == int(zetaq)*P)
assert(zetaq**3 == Mod(1, q))
Q = Eq.gens()[0]
assert(endo(Eq, zetaq, Q) == int(zetap)*Q)
embeddivp = (q-1)/embedp
embeddivq = (p-1)/embedq
twembeddivp = (2*p + 1 - q)/twembedp
twembeddivq = (2*q + 1 - p)/twembedq
iso_Ep = find_iso(Ep)
iso_Eq = find_iso(Eq)
if requireisos and (iso_Ep is None or iso_Eq is None):
continue
yield (p, q, bp, bq, zetap, zetaq, qdesc, primp, primq, secp, secq, twsecp, twsecq,
embeddivp, embeddivq, twembeddivp, twembeddivq, iso_Ep, iso_Eq)
def endo(E, zeta, P):
(xp, yp) = P.xy()
return E(zeta*xp, yp)
def find_curve(p, q, b_range=None):
for b in (b_range or COEFFICIENT_RANGE):
E = EllipticCurve(GF(p), [0, b])
if E.count_points() == q:
return (E, b)
return (None, None)
def find_gcd_primes(p):
return (r for r in GCD_PRIMES if gcd(p-1, r) == 1)
pi_12 = (pi/12).numerical_approx()
def curve_security(p, q):
sys.stdout.write('!')
sys.stdout.flush()
r = factor(q)[-1][0]
return (log(pi_12 * r, 4), embedding_degree(p, r))
def twist_security(p, q):
return curve_security(p, 2*(p+1) - q)
def embedding_degree(p, r):
sys.stdout.write('#')
sys.stdout.flush()
assert(gcd(p, r) == 1)
Z_q = Integers(r)
u = Z_q(p)
d = r-1
V = factor(d)
for (v, k) in V:
while d % v == 0:
if u^(d/v) != 1: break
d /= v
return d
def find_iso(E):
# Based on <https://eprint.iacr.org/2019/403.pdf> Appendix A.
# Look for isogenous curves having j-invariant not in {0, 1728}.
for degree in primes(ISOGENY_DEGREE_MAX+1):
sys.stdout.write('~')
sys.stdout.flush()
for iso in E.isogenies_prime_degree(degree):
if iso.codomain().j_invariant() not in (0, 1728):
return iso.dual()
return None
def format_weight(x, detail=True):
X = format(abs(x), 'b')
if detail:
assert(X.endswith('1'))
detailstr = " (bitlength %d, weight %d, 2-adicity %d)" % (len(X), sum([int(c) for c in X]),
len(X) - len(X[:-1].rstrip('0')))
else:
detailstr = " (bitlength %d)" % (len(X),)
return "%s0b%s%s" % ("-" if x < 0 else "", X, detailstr)
def main():
args = sys.argv[1:]
strategy = near_powerof2_order if "--nearpowerof2" in args else low_hamming_order
processes = 1 if "--sequential" in args else cpu_count()
if processes >= 6:
processes -= 2
requireisos = "--requireisos" in args
sortpq = "--sortpq" in args
twistsec = 0 if "--ignoretwist" in args else DEFAULT_TWIST_SECURITY
args = [arg for arg in args if not arg.startswith("--")]
if len(args) < 1:
print("""
Usage: sage amicable.sage [--sequential] [--requireisos] [--sortpq] [--ignoretwist] [--nearpowerof2] <min-bitlength> [<min-2adicity> [<stretch]]
Arguments:
--sequential Use only one thread, avoiding non-determinism in the output order.
--requireisos Require isogenies useful for a "simplified SWU" hash to curve.
--sortpq Sort p smaller than q.
--ignoretwist Ignore twist security.
--nearpowerof2 Search for primes near a power of 2, rather than with low Hamming weight.
<min-bitlength> Both primes should have this minimum bit length.
<min-2adicity> Both primes should have this minimum 2-adicity.
<stretch> Find more candidates, by filtering from 2-adicity smaller by this many bits.
""")
return
L = int(args[0])
twoadicity = int(args[1]) if len(args) > 1 else DEFAULT_TWOADICITY
stretch = int(args[2]) if len(args) > 2 else DEFAULT_STRETCH
print("Using %d processes." % (processes,))
pool = Pool(processes=processes)
try:
for wid in range(processes):
pool.apply_async(worker, (strategy, L, twoadicity, stretch, requireisos, sortpq, twistsec, wid, processes))
while True:
sleep(1000)
except (KeyboardInterrupt, SystemExit):
pass
finally:
pool.terminate()
def worker(*args):
try:
real_worker(*args)
except (KeyboardInterrupt, SystemExit):
pass
except:
print_exc()
def real_worker(*args):
for (p, q, bp, bq, zetap, zetaq, qdesc, primp, primq, secp, secq, twsecp, twsecq,
embeddivp, embeddivq, twembeddivp, twembeddivq, iso_Ep, iso_Eq) in find_nice_curves(*args):
output = "\n"
output += "p = %s\n" % format_weight(p)
output += "q = %s\n" % format_weight(q)
output += " = %s\n" % qdesc
output += "ζ_p = %s (mod p)\n" % format_weight(int(zetap), detail=False)
output += "ζ_q = %s (mod q)\n" % format_weight(int(zetaq), detail=False)
output += "Ep/Fp : y^2 = x^3 + %d\n" % (bp,)
output += "Eq/Fq : y^2 = x^3 + %d\n" % (bq,)
output += "gcd(p-1, α) = 1 for α{%s}\n" % (", ".join(map(str, find_gcd_primes(p))),)
output += "gcd(q-1, α) = 1 for α{%s}\n" % (", ".join(map(str, find_gcd_primes(q))),)
output += "%d is %ssquare and %sprimitive in Fp\n" % (bp, "" if Mod(bp, p).is_square() else "non", "" if primp else "non")
output += "%d is %ssquare and %sprimitive in Fq\n" % (bq, "" if Mod(bq, q).is_square() else "non", "" if primq else "non")
output += "Ep security = %.1f, embedding degree = (q-1)/%d\n" % (secp, embeddivp)
output += "Eq security = %.1f, embedding degree = (p-1)/%d\n" % (secq, embeddivq)
output += "Ep twist security = %.1f, embedding degree = (2p + 1 - q)/%d\n" % (twsecp, twembeddivp)
output += "Eq twist security = %.1f, embedding degree = (2q + 1 - p)/%d\n" % (twsecq, twembeddivq)
if iso_Ep is not None:
output += "iso_Ep = %r\n" % (iso_Ep,)
output += "iso_Ep maps = %r\n" % (iso_Ep.rational_maps(),)
elif ISOGENY_DEGREE_MAX > 0:
output += "No Ep isogenies for simplified SWU with degree ≤ %d\n" % (ISOGENY_DEGREE_MAX,)
if iso_Eq is not None:
output += "iso_Eq = %r\n" % (iso_Eq,)
output += "iso_Eq maps = %r\n" % (iso_Eq.rational_maps(),)
elif ISOGENY_DEGREE_MAX > 0:
output += "No Eq isogenies for simplified SWU with degree ≤ %d\n" % (ISOGENY_DEGREE_MAX,)
print(output) # one syscall to minimize tearing
main()