Make map_to_curve_simple_swu take a single input again (since we no longer need batch inversion).

Also make it clearer that we don't depend on Sage's elliptic curve impl except for debugging.

Signed-off-by: Daira Hopwood <daira@jacaranda.org>
This commit is contained in:
Daira Hopwood 2021-01-02 00:50:42 +00:00
parent c0f2b2d8b6
commit fd7283a979
1 changed files with 82 additions and 80 deletions

View File

@ -93,7 +93,7 @@ def select_z_nz(s, ifz, ifnz):
# This should be constant-time in a real implementation.
return ifz if (s == 0) else ifnz
def map_to_curve_simple_swu(F, E, Z, us, c):
def map_to_curve_simple_swu(F, E, Z, u, c):
# would be precomputed
h = F.g
(0, 0, 0, A, B) = E.a_invariants()
@ -103,83 +103,80 @@ def map_to_curve_simple_swu(F, E, Z, us, c):
assert (Z/h).is_square()
theta = sqrt(Z/h)
Qs = []
for u in us:
# 1. tv1 = inv0(Z^2 * u^4 + Z * u^2)
# 2. x1 = (-B / A) * (1 + tv1)
# 3. If tv1 == 0, set x1 = B / (Z * A)
# 4. gx1 = x1^3 + A * x1 + B
#
# We use the "Avoiding inversions" optimization in [WB2019, section 4.2]
# (not to be confused with section 4.3):
#
# here [WB2019]
# ------- ---------------------------------
# Z \xi
# u t
# Z * u^2 \xi * t^2 (called u, confusingly)
# x1 X_0(t)
# x2 X_1(t)
# gx1 g(X_0(t))
# gx2 g(X_1(t))
#
# Using the "here" names:
# x1 = N/D = [B*(Z^2 * u^4 + Z * u^2 + 1)] / [-A*(Z^2 * u^4 + Z * u^2]
# gx1 = U/V = [N^3 + A * N * D^2 + B * D^3] / D^3
# 1. tv1 = inv0(Z^2 * u^4 + Z * u^2)
# 2. x1 = (-B / A) * (1 + tv1)
# 3. If tv1 == 0, set x1 = B / (Z * A)
# 4. gx1 = x1^3 + A * x1 + B
#
# We use the "Avoiding inversions" optimization in [WB2019, section 4.2]
# (not to be confused with section 4.3):
#
# here [WB2019]
# ------- ---------------------------------
# Z \xi
# u t
# Z * u^2 \xi * t^2 (called u, confusingly)
# x1 X_0(t)
# x2 X_1(t)
# gx1 g(X_0(t))
# gx2 g(X_1(t))
#
# Using the "here" names:
# x1 = N/D = [B*(Z^2 * u^4 + Z * u^2 + 1)] / [-A*(Z^2 * u^4 + Z * u^2]
# gx1 = U/V = [N^3 + A * N * D^2 + B * D^3] / D^3
# Z and B are small so we don't count multiplication by them as a mul; A is large.
Zu2 = Z * c.sqr(u)
ta = c.sqr(Zu2) + Zu2
N = B * (ta + 1)
D = c.mul(-A, ta)
N2 = c.sqr(N)
D2 = c.sqr(D)
D3 = c.mul(D2, D)
U = select_z_nz(ta, BdivZA, c.mul(N2 + c.mul(A, D2), N) + B*D3)
V = select_z_nz(ta, 1, D3)
# Z and B are small so we don't count multiplication by them as a mul; A is large.
Zu2 = Z * c.sqr(u)
ta = c.sqr(Zu2) + Zu2
N = B * (ta + 1)
D = c.mul(-A, ta)
N2 = c.sqr(N)
D2 = c.sqr(D)
D3 = c.mul(D2, D)
U = select_z_nz(ta, BdivZA, c.mul(N2 + c.mul(A, D2), N) + B*D3)
V = select_z_nz(ta, 1, D3)
if DEBUG:
x1 = N/D
gx1 = U/V
tv1 = (0 if ta == 0 else 1/ta)
assert x1 == (BdivZA if tv1 == 0 else mBdivA * (1 + tv1))
assert gx1 == x1^3 + A * x1 + B
if DEBUG:
x1 = N/D
gx1 = U/V
tv1 = (0 if ta == 0 else 1/ta)
assert x1 == (BdivZA if tv1 == 0 else mBdivA * (1 + tv1))
assert gx1 == x1^3 + A * x1 + B
# 5. x2 = Z * u^2 * x1
x2 = c.mul(Zu2, x1)
# 5. x2 = Z * u^2 * x1
x2 = c.mul(Zu2, x1)
# 6. gx2 = x2^3 + A * x2 + B [optimized out; see below]
# 7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
# 8. Else set x = x2 and y = sqrt(gx2)
(y1, zero_if_gx1_square) = F.sarkar_divsqrt(U, V, c)
# 6. gx2 = x2^3 + A * x2 + B [optimized out; see below]
# 7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
# 8. Else set x = x2 and y = sqrt(gx2)
(y1, zero_if_gx1_square) = F.sarkar_divsqrt(U, V, c)
# This magic also comes from a generalization of [WB2019, section 4.2].
#
# The Sarkar square root algorithm with input s gives us a square root of
# h * s for free when s is not square, where h is a fixed nonsquare.
# We know that Z/h is a square since both Z and h are nonsquares.
# Precompute \theta as a square root of Z/h, or choose Z = h so that \theta = 1.
#
# We have gx2 = g(Z * u^2 * x1) = Z^3 * u^6 * gx1
# = (Z * u^3)^2 * (Z/h * h * gx1)
# = (Z * \theta * u^3)^2 * (h * gx1)
#
# When gx1 is not square, y1 is a square root of h * gx1, and so Z * \theta * u^3 * y1
# is a square root of gx2. Note that we don't actually need to compute gx2.
# This magic also comes from a generalization of [WB2019, section 4.2].
#
# The Sarkar square root algorithm with input s gives us a square root of
# h * s for free when s is not square, where h is a fixed nonsquare.
# We know that Z/h is a square since both Z and h are nonsquares.
# Precompute \theta as a square root of Z/h, or choose Z = h so that \theta = 1.
#
# We have gx2 = g(Z * u^2 * x1) = Z^3 * u^6 * gx1
# = (Z * u^3)^2 * (Z/h * h * gx1)
# = (Z * \theta * u^3)^2 * (h * gx1)
#
# When gx1 is not square, y1 is a square root of h * gx1, and so Z * \theta * u^3 * y1
# is a square root of gx2. Note that we don't actually need to compute gx2.
y2 = c.mul(theta, c.mul(Zu2, c.mul(u, y1)))
if DEBUG and zero_if_gx1_square != 0:
assert y1^2 == h * gx1, (y1_2, Z, gx1)
assert y2^2 == x2^3 + A * x2 + B, (y2, x2, A, B)
y2 = c.mul(theta, c.mul(Zu2, c.mul(u, y1)))
if DEBUG and zero_if_gx1_square != 0:
assert y1^2 == h * gx1, (y1_2, Z, gx1)
assert y2^2 == x2^3 + A * x2 + B, (y2, x2, A, B)
x = select_z_nz(zero_if_gx1_square, x1, x2)
y = select_z_nz(zero_if_gx1_square, y1, y2)
x = select_z_nz(zero_if_gx1_square, x1, x2)
y = select_z_nz(zero_if_gx1_square, y1, y2)
# 9. If sgn0(u) != sgn0(y), set y = -y
y = select_z_nz((int(u) % 2) - (int(y) % 2), y, -y)
Qs.append(E((x, y)))
# 9. If sgn0(u) != sgn0(y), set y = -y
y = select_z_nz((int(u) % 2) - (int(y) % 2), y, -y)
return Qs
return (x, y)
# iso_Ep = Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 10949663248450308183708987909873589833737836120165333298109615750520499732811*x + 1265 over Fp
@ -303,38 +300,43 @@ def hash_to_curve_affine(msg, DST, uniform=True):
c = Cost()
us = hash_to_field(msg, DST, 2 if uniform else 1)
#print("u = ", u)
Qs = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us, c)
(Q0x, Q0y) = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us[0], c)
if uniform:
(Q1x, Q1y) = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us[1], c)
# Complete addition using affine coordinates: I + 2M + 2S
# (S for x1^2; compute numerator and denominator of the division for the correct case;
# I + M to divide; S + M to compute x and y of the result.)
R = Qs[0] + Qs[1]
# Just use Sage's implementation, since this is mainly for comparison to the Jacobian impl.
R = E_isop((Q0x, Q0y)) + E_isop((Q1x, Q1y))
#print("R = ", R)
c.invs += 1
c.sqrs += 2
c.muls += 2
(Rx, Ry) = R.xy()
else:
R = Qs[0]
(Rx, Ry) = (Q0x, Q0y)
# no cofactor clearing needed since Pallas and Vesta are prime-order
(x, y) = R.xy()
P = E_p(isop_map_affine(x, y, c))
P = E_p(isop_map_affine(Rx, Ry, c))
return (P, c)
def hash_to_curve_jacobian(msg, DST):
c = Cost()
us = hash_to_field(msg, DST, 2)
#print("u = ", u)
Qs = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us, c)
(Q0x, Q0y) = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us[0], c)
(Q1x, Q1y) = map_to_curve_simple_swu(F_p, E_isop, Z_isop, us[1], c)
R = Qs[0] + Qs[1]
#print("R = ", R)
if DEBUG:
R = E_isop((Q0x, Q0y)) + E_isop((Q1x, Q1y))
#print("R = ", R)
(Q0x, Q0y) = Qs[0].xy()
(Q1x, Q1y) = Qs[1].xy()
(Rx, Ry, Rz) = unified_mmadd_jacobian(E_isop_A, Q0x, Q0y, Q1x, Q1y, c)
assert E_isop((Rx / Rz^2, Ry / Rz^3)) == R
if DEBUG: assert E_isop((Rx / Rz^2, Ry / Rz^3)) == R
# no cofactor clearing needed since Pallas and Vesta are prime-order
(Px, Py, Pz) = isop_map_jacobian(Rx, Ry, Rz, c)