Some minor documentation/changes to domain.
This commit is contained in:
parent
f7815f6e49
commit
86f652fa9f
|
@ -1,7 +1,20 @@
|
|||
//! This module contains an `EvaluationDomain` abstraction for
|
||||
//! performing various kinds of polynomial arithmetic on top of
|
||||
//! the scalar field.
|
||||
//!
|
||||
//! In pairing-based SNARKs like Groth16, we need to calculate
|
||||
//! a quotient polynomial over a target polynomial with roots
|
||||
//! at distinct points associated with each constraint of the
|
||||
//! constraint system. In order to be efficient, we choose these
|
||||
//! roots to be the powers of a 2^n root of unity in the field.
|
||||
//! This allows us to perform polynomial operations in O(n)
|
||||
//! by performing an O(n log n) FFT over such a domain.
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField
|
||||
PrimeField,
|
||||
CurveProjective
|
||||
};
|
||||
|
||||
use super::{
|
||||
|
@ -10,8 +23,6 @@ use super::{
|
|||
|
||||
use super::multicore::Worker;
|
||||
|
||||
const LARGEST_POLYNOMIAL_DEGREE: usize = 1 << 28;
|
||||
|
||||
pub struct EvaluationDomain<E: Engine, G: Group<E>> {
|
||||
coeffs: Vec<G>,
|
||||
exp: u32,
|
||||
|
@ -36,12 +47,6 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
|
|||
|
||||
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError>
|
||||
{
|
||||
// For platform compatibility, we expect not to
|
||||
// deal with these kinds of large polynomials.
|
||||
if coeffs.len() > LARGEST_POLYNOMIAL_DEGREE {
|
||||
return Err(SynthesisError::PolynomialDegreeTooLarge)
|
||||
}
|
||||
|
||||
// Compute the size of our evaluation domain
|
||||
let mut m = 1;
|
||||
let mut exp = 0;
|
||||
|
@ -126,6 +131,8 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
|
|||
self.distribute_powers(worker, geninv);
|
||||
}
|
||||
|
||||
/// This evaluates t(tau) for this domain, which is
|
||||
/// tau^m - 1 for these radix-2 domains.
|
||||
pub fn z(&self, tau: &E::Fr) -> E::Fr {
|
||||
let mut tmp = tau.pow(&[self.coeffs.len() as u64]);
|
||||
tmp.sub_assign(&E::Fr::one());
|
||||
|
@ -133,6 +140,9 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
|
|||
tmp
|
||||
}
|
||||
|
||||
/// The target polynomial is the zero polynomial in our
|
||||
/// evaluation domain, so we must perform division over
|
||||
/// a coset.
|
||||
pub fn divide_by_z_on_coset(&mut self, worker: &Worker)
|
||||
{
|
||||
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap();
|
||||
|
@ -148,6 +158,7 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
|
|||
});
|
||||
}
|
||||
|
||||
/// Perform O(n) multiplication of two polynomials in the domain.
|
||||
pub fn mul_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, Scalar<E>>) {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
|
@ -162,6 +173,7 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
|
|||
});
|
||||
}
|
||||
|
||||
/// Perform O(n) subtraction of one polynomial from another in the domain.
|
||||
pub fn sub_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, G>) {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
|
@ -184,6 +196,37 @@ pub trait Group<E: Engine>: Sized + Copy + Clone + Send + Sync {
|
|||
fn group_sub_assign(&mut self, other: &Self);
|
||||
}
|
||||
|
||||
pub struct Point<G: CurveProjective>(pub G);
|
||||
|
||||
impl<G: CurveProjective> PartialEq for Point<G> {
|
||||
fn eq(&self, other: &Point<G>) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Copy for Point<G> { }
|
||||
|
||||
impl<G: CurveProjective> Clone for Point<G> {
|
||||
fn clone(&self) -> Point<G> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Group<G::Engine> for Point<G> {
|
||||
fn group_zero() -> Self {
|
||||
Point(G::zero())
|
||||
}
|
||||
fn group_mul_assign(&mut self, by: &G::Scalar) {
|
||||
self.0.mul_assign(by.into_repr());
|
||||
}
|
||||
fn group_add_assign(&mut self, other: &Self) {
|
||||
self.0.add_assign(&other.0);
|
||||
}
|
||||
fn group_sub_assign(&mut self, other: &Self) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Scalar<E: Engine>(pub E::Fr);
|
||||
|
||||
impl<E: Engine> PartialEq for Scalar<E> {
|
||||
|
|
|
@ -7,8 +7,8 @@ extern crate bit_vec;
|
|||
extern crate crossbeam;
|
||||
extern crate byteorder;
|
||||
|
||||
pub mod multicore;
|
||||
pub mod multiexp;
|
||||
mod multicore;
|
||||
mod multiexp;
|
||||
pub mod domain;
|
||||
pub mod groth16;
|
||||
|
||||
|
|
Loading…
Reference in New Issue