frost/frost-core/src/frost.rs

417 lines
14 KiB
Rust
Raw Normal View History

//! An implementation of FROST (Flexible Round-Optimized Schnorr Threshold)
//! signatures.
//!
//! If you are interested in deploying FROST, please do not hesitate to consult the FROST authors.
//!
//! This implementation currently only supports key generation using a central
//! dealer. In the future, we will add support for key generation via a DKG,
//! as specified in the FROST paper.
//!
//! Internally, keygen_with_dealer generates keys using Verifiable Secret
//! Sharing, where shares are generated using Shamir Secret Sharing.
use std::{
collections::{BTreeMap, HashMap},
fmt::{self, Debug},
ops::Index,
};
#[cfg(any(test, feature = "test-impl"))]
use hex::FromHex;
mod identifier;
pub mod keys;
pub mod round1;
pub mod round2;
use crate::{Ciphersuite, Element, Error, Field, Group, Scalar, Signature};
pub use self::identifier::Identifier;
/// The binding factor, also known as _rho_ (ρ)
///
/// Ensures each signature share is strongly bound to a signing set, specific set
/// of commitments, and a specific message.
///
/// <https://github.com/cfrg/draft-irtf-cfrg-frost/blob/master/draft-irtf-cfrg-frost.md>
#[derive(Clone, PartialEq, Eq)]
pub struct BindingFactor<C: Ciphersuite>(Scalar<C>);
impl<C> BindingFactor<C>
where
C: Ciphersuite,
{
/// Deserializes [`BindingFactor`] from bytes.
pub fn from_bytes(
bytes: <<C::Group as Group>::Field as Field>::Serialization,
) -> Result<Self, Error<C>> {
<<C::Group as Group>::Field>::deserialize(&bytes)
.map(|scalar| Self(scalar))
.map_err(|e| e.into())
}
/// Serializes [`BindingFactor`] to bytes.
pub fn to_bytes(&self) -> <<C::Group as Group>::Field as Field>::Serialization {
<<C::Group as Group>::Field>::serialize(&self.0)
}
}
impl<C> Debug for BindingFactor<C>
where
C: Ciphersuite,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("BindingFactor")
.field(&hex::encode(self.to_bytes()))
.finish()
}
}
/// A list of binding factors and their associated identifiers.
#[derive(Clone)]
pub struct BindingFactorList<C: Ciphersuite>(BTreeMap<Identifier<C>, BindingFactor<C>>);
impl<C> BindingFactorList<C>
where
C: Ciphersuite,
{
/// Create a new [`BindingFactorList`] from a vector of binding factors.
#[cfg(feature = "internals")]
pub fn new(binding_factors: BTreeMap<Identifier<C>, BindingFactor<C>>) -> Self {
Self(binding_factors)
}
/// Return iterator through all factors.
pub fn iter(&self) -> impl Iterator<Item = (&Identifier<C>, &BindingFactor<C>)> {
self.0.iter()
}
}
impl<C> Index<Identifier<C>> for BindingFactorList<C>
where
C: Ciphersuite,
{
type Output = BindingFactor<C>;
// Get the binding factor of a participant in the list.
//
// [`binding_factor_for_participant`] in the spec
//
// [`binding_factor_for_participant`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-11.html#section-4.3
fn index(&self, identifier: Identifier<C>) -> &Self::Output {
&self.0[&identifier]
}
}
/// [`compute_binding_factors`] in the spec
///
/// [`compute_binding_factors`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-10.html#section-4.4
#[cfg_attr(feature = "internals", visibility::make(pub))]
pub(crate) fn compute_binding_factor_list<C>(
signing_package: &SigningPackage<C>,
additional_prefix: &[u8],
) -> BindingFactorList<C>
where
C: Ciphersuite,
{
let preimages = signing_package.binding_factor_preimages(additional_prefix);
BindingFactorList(
preimages
.iter()
.map(|(identifier, preimage)| {
let binding_factor = C::H1(preimage);
(*identifier, BindingFactor(binding_factor))
})
.collect(),
)
}
#[cfg(any(test, feature = "test-impl"))]
impl<C> FromHex for BindingFactor<C>
where
C: Ciphersuite,
{
type Error = &'static str;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let v: Vec<u8> = FromHex::from_hex(hex).map_err(|_| "invalid hex")?;
match v.try_into() {
Ok(bytes) => Self::from_bytes(bytes).map_err(|_| "malformed scalar encoding"),
Err(_) => Err("malformed scalar encoding"),
}
}
}
// TODO: pub struct Lagrange<C: Ciphersuite>(Scalar);
/// Generates the lagrange coefficient for the i'th participant.
#[cfg_attr(feature = "internals", visibility::make(pub))]
fn derive_lagrange_coeff<C: Ciphersuite>(
signer_id: &Identifier<C>,
signing_package: &SigningPackage<C>,
) -> Result<Scalar<C>, Error<C>> {
let zero = <<C::Group as Group>::Field>::zero();
let mut num = <<C::Group as Group>::Field>::one();
let mut den = <<C::Group as Group>::Field>::one();
// Ala the sorting of B, just always sort by identifier in ascending order
//
// https://github.com/cfrg/draft-irtf-cfrg-frost/blob/master/draft-irtf-cfrg-frost.md#encoding-operations-dep-encoding
for commitment in signing_package.signing_commitments() {
if commitment.identifier == *signer_id {
continue;
}
num *= commitment.identifier;
den *= commitment.identifier - *signer_id;
}
if den == zero {
return Err(Error::DuplicatedShares);
}
// TODO(dconnolly): return this error if the inversion result == zero
let lagrange_coeff = num * <<C::Group as Group>::Field>::invert(&den).unwrap();
Ok(lagrange_coeff)
}
/// Generated by the coordinator of the signing operation and distributed to
/// each signing party
#[derive(Clone)]
pub struct SigningPackage<C: Ciphersuite> {
/// The set of commitments participants published in the first round of the
/// protocol.
signing_commitments: HashMap<Identifier<C>, round1::SigningCommitments<C>>,
/// Message which each participant will sign.
///
/// Each signer should perform protocol-specific verification on the
/// message.
message: Vec<u8>,
}
impl<C> SigningPackage<C>
where
C: Ciphersuite,
{
/// Create a new `SigingPackage`
///
/// The `signing_commitments` are sorted by participant `identifier`.
pub fn new(
signing_commitments: Vec<round1::SigningCommitments<C>>,
message: Vec<u8>,
) -> SigningPackage<C> {
SigningPackage {
signing_commitments: signing_commitments
.into_iter()
.map(|s| (s.identifier, s))
.collect(),
message,
}
}
/// Get a signing commitment by its participant identifier.
pub fn signing_commitment(&self, identifier: &Identifier<C>) -> round1::SigningCommitments<C> {
self.signing_commitments[identifier]
}
/// Get the signing commitments, sorted by the participant indices
pub fn signing_commitments(&self) -> Vec<round1::SigningCommitments<C>> {
let mut signing_commitments: Vec<round1::SigningCommitments<C>> =
self.signing_commitments.values().cloned().collect();
signing_commitments.sort_by_key(|a| a.identifier);
signing_commitments
}
/// Get the message to be signed
pub fn message(&self) -> &Vec<u8> {
&self.message
}
/// Compute the preimages to H1 to compute the per-signer binding factors
// We separate this out into its own method so it can be tested
#[cfg_attr(feature = "internals", visibility::make(pub))]
pub fn binding_factor_preimages(
&self,
additional_prefix: &[u8],
) -> Vec<(Identifier<C>, Vec<u8>)> {
let mut binding_factor_input_prefix = vec![];
binding_factor_input_prefix.extend_from_slice(C::H4(self.message.as_slice()).as_ref());
binding_factor_input_prefix.extend_from_slice(
C::H5(&round1::encode_group_commitments(self.signing_commitments())[..]).as_ref(),
);
binding_factor_input_prefix.extend_from_slice(additional_prefix);
self.signing_commitments()
.iter()
.map(|c| {
let mut binding_factor_input = vec![];
binding_factor_input.extend_from_slice(&binding_factor_input_prefix);
binding_factor_input.extend_from_slice(c.identifier.serialize().as_ref());
(c.identifier, binding_factor_input)
})
.collect()
}
}
/// The product of all signers' individual commitments, published as part of the
/// final signature.
#[derive(Clone, PartialEq, Eq)]
pub struct GroupCommitment<C: Ciphersuite>(pub(super) Element<C>);
impl<C> GroupCommitment<C>
where
C: Ciphersuite,
{
/// Return the underlying element.
#[cfg(feature = "internals")]
pub fn to_element(self) -> <C::Group as Group>::Element {
self.0
}
}
// impl<C> Debug for GroupCommitment<C> where C: Ciphersuite {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// f.debug_tuple("GroupCommitment")
// .field(&hex::encode(self.0.compress().to_bytes()))
// .finish()
// }
// }
/// Generates the group commitment which is published as part of the joint
/// Schnorr signature.
///
/// Implements [`compute_group_commitment`] from the spec.
///
/// [`compute_group_commitment`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-10.html#section-4.5
#[cfg_attr(feature = "internals", visibility::make(pub))]
fn compute_group_commitment<C>(
signing_package: &SigningPackage<C>,
binding_factor_list: &BindingFactorList<C>,
) -> Result<GroupCommitment<C>, Error<C>>
where
C: Ciphersuite,
{
let identity = <C::Group as Group>::identity();
let mut group_commitment = <C::Group as Group>::identity();
// Ala the sorting of B, just always sort by identifier in ascending order
//
// https://github.com/cfrg/draft-irtf-cfrg-frost/blob/master/draft-irtf-cfrg-frost.md#encoding-operations-dep-encoding
for commitment in signing_package.signing_commitments() {
// The following check prevents a party from accidentally revealing their share.
// Note that the '&&' operator would be sufficient.
if identity == commitment.binding.0 || identity == commitment.hiding.0 {
return Err(Error::IdentityCommitment);
}
let binding_factor = binding_factor_list[commitment.identifier].clone();
group_commitment =
group_commitment + (commitment.hiding.0 + (commitment.binding.0 * binding_factor.0));
}
Ok(GroupCommitment(group_commitment))
}
////////////////////////////////////////////////////////////////////////////////
// Aggregation
////////////////////////////////////////////////////////////////////////////////
/// Aggregates the signature shares to produce a final signature that
/// can be verified with the group public key.
///
/// This operation is performed by a coordinator that can communicate with all
/// the signing participants before publishing the final signature. The
/// coordinator can be one of the participants or a semi-trusted third party
/// (who is trusted to not perform denial of service attacks, but does not learn
/// any secret information). Note that because the coordinator is trusted to
/// report misbehaving parties in order to avoid publishing an invalid
/// signature, if the coordinator themselves is a signer and misbehaves, they
/// can avoid that step. However, at worst, this results in a denial of
/// service attack due to publishing an invalid signature.
pub fn aggregate<C>(
signing_package: &SigningPackage<C>,
signature_shares: &[round2::SignatureShare<C>],
pubkeys: &keys::PublicKeyPackage<C>,
) -> Result<Signature<C>, Error<C>>
where
C: Ciphersuite,
{
// Encodes the signing commitment list produced in round one as part of generating [`BindingFactor`], the
// binding factor.
let binding_factor_list: BindingFactorList<C> =
compute_binding_factor_list(signing_package, &[]);
// Compute the group commitment from signing commitments produced in round one.
let group_commitment = compute_group_commitment(signing_package, &binding_factor_list)?;
// The aggregation of the signature shares by summing them up, resulting in
// a plain Schnorr signature.
//
// Implements [`aggregate`] from the spec.
//
2022-12-08 09:42:47 -08:00
// [`aggregate`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-11.html#section-5.3
let mut z = <<C::Group as Group>::Field>::zero();
for signature_share in signature_shares {
z = z + signature_share.signature.z_share;
}
let signature = Signature {
R: group_commitment.0,
z,
};
// Verify the aggregate signature
let verification_result = pubkeys
.group_public
.verify(signing_package.message(), &signature);
// Only if the verification of the aggregate signature failed; verify each share to find the cheater.
// This approach is more efficient since we don't need to verify all shares
// if the aggregate signature is valid (which should be the common case).
if let Err(err) = verification_result {
// Compute the per-message challenge.
let challenge = crate::challenge::<C>(
&group_commitment.0,
&pubkeys.group_public.element,
signing_package.message().as_slice(),
);
// Verify the signature shares.
for signature_share in signature_shares {
// Look up the public key for this signer, where `signer_pubkey` = _G.ScalarBaseMult(s[i])_,
// and where s[i] is a secret share of the constant term of _f_, the secret polynomial.
let signer_pubkey = pubkeys
.signer_pubkeys
.get(&signature_share.identifier)
.unwrap();
// Compute Lagrange coefficient.
let lambda_i = derive_lagrange_coeff(&signature_share.identifier, signing_package)?;
let binding_factor = binding_factor_list[signature_share.identifier].clone();
// Compute the commitment share.
let R_share = signing_package
.signing_commitment(&signature_share.identifier)
.to_group_commitment_share(&binding_factor);
// Compute relation values to verify this signature share.
signature_share.verify(&R_share, signer_pubkey, lambda_i, &challenge)?;
}
// We should never reach here; but we return the verification error to be safe.
return Err(err);
}
Ok(signature)
}