use `reddsa` crate and remove duplicated RedPallas code (#6013)

* use `reddsa` crate and remove duplicated RedPallas code

* update old references to 'redpallas' crate

* Use reddsa 0.4.0

* update Cargo.lock

---------

Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
Co-authored-by: Deirdre Connolly <durumcrustulum@gmail.com>
This commit is contained in:
Conrado Gouvea 2023-02-01 20:27:28 -03:00 committed by GitHub
parent b3ee94bc7b
commit 26c86cc088
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
27 changed files with 128 additions and 1426 deletions

21
Cargo.lock generated
View File

@ -2654,7 +2654,7 @@ dependencies = [
"nonempty",
"pasta_curves",
"rand 0.8.5",
"reddsa",
"reddsa 0.3.0",
"serde",
"subtle",
"tracing",
@ -3374,6 +3374,24 @@ dependencies = [
"zeroize",
]
[[package]]
name = "reddsa"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c56c56c88c633d5ccc03ec3931a0d3991c2ae8d92c049ece060d41f6662a818c"
dependencies = [
"blake2b_simd",
"byteorder",
"group",
"hex",
"jubjub",
"pasta_curves",
"rand_core 0.6.4",
"serde",
"thiserror",
"zeroize",
]
[[package]]
name = "redjubjub"
version = "0.5.0"
@ -5453,6 +5471,7 @@ dependencies = [
"rand_chacha 0.3.1",
"rand_core 0.6.4",
"rayon",
"reddsa 0.4.0",
"redjubjub",
"ripemd",
"secp256k1",

View File

@ -87,6 +87,7 @@ rayon = "1.6.1"
# ZF deps
ed25519-zebra = "3.1.0"
redjubjub = "0.5.0"
reddsa = "0.4.0"
# Optional testing dependencies
proptest = { version = "0.10.1", optional = true }

View File

@ -5,8 +5,11 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use rand::{thread_rng, Rng};
use zebra_chain::primitives::redpallas::*;
use reddsa::{
batch,
orchard::{Binding, SpendAuth},
Signature, SigningKey, VerificationKey, VerificationKeyBytes,
};
const MESSAGE_BYTES: &[u8; 0] = b"";
@ -95,10 +98,18 @@ fn bench_batch_verify(c: &mut Criterion) {
for item in sigs.iter() {
match item {
Item::SpendAuth { vk_bytes, sig } => {
batch.queue((*vk_bytes, *sig, MESSAGE_BYTES));
batch.queue(batch::Item::from_spendauth(
*vk_bytes,
*sig,
MESSAGE_BYTES,
));
}
Item::Binding { vk_bytes, sig } => {
batch.queue((*vk_bytes, *sig, MESSAGE_BYTES));
batch.queue(batch::Item::from_binding(
*vk_bytes,
*sig,
MESSAGE_BYTES,
));
}
}
}

View File

@ -1,12 +1,10 @@
use std::{convert::TryFrom, io};
use halo2::pasta::pallas;
use reddsa::orchard::SpendAuth;
use crate::{
primitives::redpallas::{self, SpendAuth},
serialization::{
use crate::serialization::{
serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize,
},
};
use super::{
@ -29,7 +27,7 @@ pub struct Action {
/// The nullifier of the input note being spent.
pub nullifier: note::Nullifier,
/// The randomized validating key for spendAuthSig,
pub rk: redpallas::VerificationKeyBytes<SpendAuth>,
pub rk: reddsa::VerificationKeyBytes<SpendAuth>,
/// The x-coordinate of the note commitment for the output note.
#[serde(with = "serde_helpers::Base")]
pub cm_x: pallas::Base,
@ -81,7 +79,7 @@ impl ZcashDeserialize for Action {
// https://zips.z.cash/protocol/protocol.pdf#concretespendauthsig
// https://zips.z.cash/protocol/protocol.pdf#concretereddsa
// This only reads the 32-byte buffer. The type is enforced
// on signature verification; see [`redpallas::batch`]
// on signature verification; see [`reddsa::batch`]
rk: reader.read_32_bytes()?.into(),
// Type is `{0 .. 𝑞_ 1}`. Note that the second rule quoted above
// is also enforced here and it is technically redundant with the first.

View File

@ -1,12 +1,10 @@
//! Randomised data generation for Orchard types.
use std::marker::PhantomData;
use group::{ff::PrimeField, prime::PrimeCurveAffine};
use halo2::{arithmetic::FieldExt, pasta::pallas};
use proptest::{arbitrary::any, array, collection::vec, prelude::*};
use crate::primitives::redpallas::{Signature, SpendAuth, VerificationKey, VerificationKeyBytes};
use reddsa::{orchard::SpendAuth, Signature, SigningKey, VerificationKey, VerificationKeyBytes};
use super::{
keys::*, note, tree, Action, AuthorizedAction, Flags, NoteCommitment, ValueCommitment,
@ -18,14 +16,14 @@ impl Arbitrary for Action {
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(
any::<note::Nullifier>(),
any::<VerificationKeyBytes<SpendAuth>>(),
any::<SpendAuthVerificationKeyBytes>(),
any::<note::EncryptedNote>(),
any::<note::WrappedNoteKey>(),
)
.prop_map(|(nullifier, rk, enc_ciphertext, out_ciphertext)| Self {
cv: ValueCommitment(pallas::Affine::identity()),
nullifier,
rk,
rk: rk.0,
cm_x: NoteCommitment(pallas::Affine::identity()).extract_x(),
ephemeral_key: EphemeralPublicKey(pallas::Affine::generator()),
enc_ciphertext,
@ -57,10 +55,10 @@ impl Arbitrary for AuthorizedAction {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(any::<Action>(), any::<Signature<SpendAuth>>())
(any::<Action>(), any::<SpendAuthSignature>())
.prop_map(|(action, spend_auth_sig)| Self {
action,
spend_auth_sig,
spend_auth_sig: spend_auth_sig.0,
})
.boxed()
}
@ -68,15 +66,19 @@ impl Arbitrary for AuthorizedAction {
type Strategy = BoxedStrategy<Self>;
}
impl Arbitrary for Signature<SpendAuth> {
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct SpendAuthSignature(pub(crate) Signature<SpendAuth>);
impl Arbitrary for SpendAuthSignature {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(array::uniform32(any::<u8>()), array::uniform32(any::<u8>()))
.prop_map(|(r_bytes, s_bytes)| Self {
r_bytes: r_bytes.into(),
s_bytes: s_bytes.into(),
_marker: PhantomData,
.prop_map(|(r_bytes, s_bytes)| {
let mut bytes = [0; 64];
bytes[0..32].copy_from_slice(&r_bytes[..]);
bytes[32..64].copy_from_slice(&s_bytes[..]);
SpendAuthSignature(Signature::<SpendAuth>::from(bytes))
})
.boxed()
}
@ -84,16 +86,25 @@ impl Arbitrary for Signature<SpendAuth> {
type Strategy = BoxedStrategy<Self>;
}
impl Arbitrary for VerificationKeyBytes<SpendAuth> {
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
struct SpendAuthVerificationKeyBytes(pub(crate) VerificationKeyBytes<SpendAuth>);
impl Arbitrary for SpendAuthVerificationKeyBytes {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
// Generate a random signing key from a "seed".
(vec(any::<u8>(), 64))
.prop_map(|bytes| {
let bytes = bytes.try_into().expect("vec is the correct length");
let sk = pallas::Scalar::from_bytes_wide(&bytes);
let pk = VerificationKey::from_scalar(&sk);
pk.into()
// Convert to a scalar
let sk_scalar = pallas::Scalar::from_bytes_wide(&bytes);
// Convert that back to a (canonical) encoding
let sk_bytes = sk_scalar.to_repr();
// Decode it into a signing key
let sk = SigningKey::try_from(sk_bytes).unwrap();
let pk = VerificationKey::<SpendAuth>::from(&sk);
SpendAuthVerificationKeyBytes(pk.into())
})
.boxed()
}

View File

@ -8,15 +8,13 @@ use std::{
use byteorder::{ReadBytesExt, WriteBytesExt};
use halo2::pasta::pallas;
use reddsa::{self, orchard::Binding, orchard::SpendAuth, Signature};
use crate::{
amount::{Amount, NegativeAllowed},
block::MAX_BLOCK_BYTES,
orchard::{tree, Action, Nullifier, ValueCommitment},
primitives::{
redpallas::{self, Binding, Signature, SpendAuth},
Halo2Proof,
},
primitives::Halo2Proof,
serialization::{
AtLeastOne, SerializationError, TrustedPreallocate, ZcashDeserialize, ZcashSerialize,
},
@ -98,7 +96,7 @@ impl ShieldedData {
/// the balancing value.
///
/// <https://zips.z.cash/protocol/protocol.pdf#orchardbalance>
pub fn binding_verification_key(&self) -> redpallas::VerificationKeyBytes<Binding> {
pub fn binding_verification_key(&self) -> reddsa::VerificationKeyBytes<Binding> {
let cv: ValueCommitment = self.actions().map(|action| action.cv).sum();
let cv_balance: ValueCommitment =
ValueCommitment::new(pallas::Scalar::zero(), self.value_balance);

View File

@ -1,12 +1,13 @@
//! Tests for trusted preallocation during deserialization.
use reddsa::{orchard::SpendAuth, Signature};
use crate::{
block::MAX_BLOCK_BYTES,
orchard::{
shielded_data::{ACTION_SIZE, AUTHORIZED_ACTION_SIZE},
Action, AuthorizedAction,
},
primitives::redpallas::{Signature, SpendAuth},
serialization::{arbitrary::max_allocation_is_big_enough, TrustedPreallocate, ZcashSerialize},
};

View File

@ -5,10 +5,8 @@
//! whose functionality is implemented elsewhere.
mod proofs;
// TODO: re-export redpallas if needed, or reddsa if that gets merged https://github.com/ZcashFoundation/zebra/issues/2044
pub mod redpallas;
pub use ed25519_zebra as ed25519;
pub use reddsa;
pub use redjubjub;
pub use x25519_dalek as x25519;

View File

@ -1,81 +0,0 @@
// -*- mode: rust; -*-
//
// This file is part of redjubjub.
// Copyright (c) 2019-2021 Zcash Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Deirdre Connolly <deirdre@zfnd.org>
// - Henry de Valence <hdevalence@hdevalence.ca>
//! RedPallas digital signatures.
//!
//! RedDSA (a Schnorr-based signature scheme) signatures over the [Pallas][pallas] curve.
//!
//! <https://zips.z.cash/protocol/protocol.pdf#concretereddsa>
use group::GroupEncoding;
use halo2::pasta::pallas;
pub mod batch;
mod constants;
#[allow(missing_docs)]
mod error;
mod hash;
mod scalar_mul;
mod signature;
mod signing_key;
#[cfg(test)]
mod tests;
mod verification_key;
pub use error::Error;
pub use hash::HStar;
pub use signature::Signature;
pub use signing_key::SigningKey;
pub use verification_key::{VerificationKey, VerificationKeyBytes};
/// An element of the Pallas scalar field used for randomization of verification
/// and signing keys.
pub type Randomizer = pallas::Scalar;
/// Abstracts over different RedPallas parameter choices, [`Binding`]
/// and [`SpendAuth`].
///
/// As described [at the end of §5.4.6][concretereddsa] of the Zcash
/// protocol specification, the generator used in RedPallas is left as
/// an unspecified parameter, chosen differently for each of
/// `BindingSig` and `SpendAuthSig`.
///
/// To handle this, we encode the parameter choice as a genuine type
/// parameter.
///
/// [concretereddsa]: https://zips.z.cash/protocol/nu5.pdf#concretereddsa
pub trait SigType: private::Sealed {}
/// A type variable corresponding to Zcash's `BindingSig`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Deserialize, Serialize)]
pub enum Binding {}
impl SigType for Binding {}
/// A type variable corresponding to Zcash's `SpendAuthSig`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Deserialize, Serialize)]
pub enum SpendAuth {}
impl SigType for SpendAuth {}
mod private {
use super::*;
pub trait Sealed: Copy + Clone + Eq + PartialEq + std::fmt::Debug {
fn basepoint() -> pallas::Point;
}
impl Sealed for Binding {
fn basepoint() -> pallas::Point {
pallas::Point::from_bytes(&constants::BINDINGSIG_BASEPOINT_BYTES).unwrap()
}
}
impl Sealed for SpendAuth {
fn basepoint() -> pallas::Point {
pallas::Point::from_bytes(&constants::SPENDAUTHSIG_BASEPOINT_BYTES).unwrap()
}
}
}

View File

@ -1,305 +0,0 @@
// -*- mode: rust; -*-
//
// This file is part of redpallas.
// Copyright (c) 2019-2021 Zcash Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Deirdre Connolly <deirdre@zfnd.org>
// - Henry de Valence <hdevalence@hdevalence.ca>
//! Performs batch RedPallas signature verification.
//!
//! Batch verification asks whether *all* signatures in some set are valid,
//! rather than asking whether *each* of them is valid. This allows sharing
//! computations among all signature verifications, performing less work overall
//! at the cost of higher latency (the entire batch must complete), complexity of
//! caller code (which must assemble a batch of signatures across work-items),
//! and loss of the ability to easily pinpoint failing signatures.
use std::convert::TryFrom;
use group::{ff::PrimeField, Group, GroupEncoding};
use rand_core::{CryptoRng, RngCore};
use super::{private::Sealed, scalar_mul::VartimeMultiscalarMul, *};
/// Shim to generate a random 128 bit value in a `[u64; 4]`, without
/// importing `rand`.
///
/// The final 128 bits are zero.
fn gen_128_bits<R: RngCore + CryptoRng>(mut rng: R) -> [u64; 4] {
let mut bytes = [0u64; 4];
bytes[0] = rng.next_u64();
bytes[1] = rng.next_u64();
bytes
}
/// Inner type of a batch verification item.
///
/// This struct exists to allow batch processing to be decoupled from the
/// lifetime of the message. This is useful when using the batch verification
/// API in an async context
///
/// The different enum variants are for the different signature types which use
/// different Pallas basepoints for computation: SpendAuth and Binding signatures.
#[derive(Clone, Debug)]
enum Inner {
/// A RedPallas signature using the SpendAuth generator group element.
///
/// Used in Orchard to prove knowledge of the `spending key` authorizing
/// spending of an input note. There is a separate signature, vs just
/// verifying inside the proof, to allow resource-limited devices to
/// authorize a shielded transaction without needing to construct a proof
/// themselves.
///
/// <https://zips.z.cash/protocol/protocol.pdf#spendauthsig>
SpendAuth {
vk_bytes: VerificationKeyBytes<SpendAuth>,
sig: Signature<SpendAuth>,
c: pallas::Scalar,
},
/// A RedPallas signature using the Binding generator group element.
///
/// Verifying this signature ensures that the Orchard Action transfers in
/// the transaction balance are valid, without their individual net values
/// being revealed. In addition, this proves that the signer, knowing the
/// sum of the Orchard value commitment randomnesses, authorized a
/// transaction with the given SIGHASH transaction hash by signing `SigHash`.
///
/// <https://zips.z.cash/protocol/protocol.pdf#orchardbalance>
Binding {
vk_bytes: VerificationKeyBytes<Binding>,
sig: Signature<Binding>,
c: pallas::Scalar,
},
}
/// A batch verification item.
///
/// This struct exists to allow batch processing to be decoupled from the
/// lifetime of the message. This is useful when using the batch verification API
/// in an async context.
#[derive(Clone, Debug)]
pub struct Item {
inner: Inner,
}
impl<'msg, M: AsRef<[u8]>>
From<(
VerificationKeyBytes<SpendAuth>,
Signature<SpendAuth>,
&'msg M,
)> for Item
{
fn from(
(vk_bytes, sig, msg): (
VerificationKeyBytes<SpendAuth>,
Signature<SpendAuth>,
&'msg M,
),
) -> Self {
// Compute c now to avoid dependency on the msg lifetime.
let c = HStar::default()
.update(&sig.r_bytes[..])
.update(&vk_bytes.bytes[..])
.update(msg)
.finalize();
Self {
inner: Inner::SpendAuth { vk_bytes, sig, c },
}
}
}
impl<'msg, M: AsRef<[u8]>> From<(VerificationKeyBytes<Binding>, Signature<Binding>, &'msg M)>
for Item
{
fn from(
(vk_bytes, sig, msg): (VerificationKeyBytes<Binding>, Signature<Binding>, &'msg M),
) -> Self {
// Compute c now to avoid dependency on the msg lifetime.
let c = HStar::default()
.update(&sig.r_bytes[..])
.update(&vk_bytes.bytes[..])
.update(msg)
.finalize();
Self {
inner: Inner::Binding { vk_bytes, sig, c },
}
}
}
impl Item {
/// Perform non-batched verification of this `Item`.
///
/// This is useful (in combination with `Item::clone`) for implementing
/// fallback logic when batch verification fails. In contrast to
/// [`VerificationKey::verify`], which requires borrowing the message data,
/// the `Item` type is unlinked from the lifetime of the message.
pub fn verify_single(self) -> Result<(), Error> {
match self.inner {
Inner::Binding { vk_bytes, sig, c } => VerificationKey::<Binding>::try_from(vk_bytes)
.and_then(|vk| vk.verify_prehashed(&sig, c)),
Inner::SpendAuth { vk_bytes, sig, c } => {
// # Consensus
//
// > Elements of an Action description MUST be canonical encodings of the types given above.
//
// https://zips.z.cash/protocol/protocol.pdf#actiondesc
//
// This validates the `rk` element, whose type is
// SpendAuthSig^{Orchard}.Public, i.e. .
VerificationKey::<SpendAuth>::try_from(vk_bytes)
.and_then(|vk| vk.verify_prehashed(&sig, c))
}
}
}
}
#[derive(Default)]
/// A batch verification context.
pub struct Verifier {
/// Signature data queued for verification.
signatures: Vec<Item>,
}
impl Verifier {
/// Construct a new batch verifier.
pub fn new() -> Verifier {
Verifier::default()
}
/// Queue an Item for verification.
pub fn queue<I: Into<Item>>(&mut self, item: I) {
self.signatures.push(item.into());
}
/// Perform batch verification, returning `Ok(())` if all signatures were
/// valid and `Err` otherwise.
///
/// The batch verification equation is:
///
/// h_G * -[sum(z_i * s_i)]P_G + sum(\[z_i\]R_i + [z_i * c_i]VK_i) = 0_G
///
/// which we split out into:
///
/// h_G * -[sum(z_i * s_i)]P_G + sum(\[z_i\]R_i) + sum([z_i * c_i]VK_i) = 0_G
///
/// so that we can use multiscalar multiplication speedups.
///
/// where for each signature i,
/// - VK_i is the verification key;
/// - R_i is the signature's R value;
/// - s_i is the signature's s value;
/// - c_i is the hash of the message and other data;
/// - z_i is a random 128-bit Scalar;
/// - h_G is the cofactor of the group;
/// - P_G is the generator of the subgroup;
///
/// Since RedPallas uses different subgroups for different types
/// of signatures, SpendAuth's and Binding's, we need to have yet
/// another point and associated scalar accumulator for all the
/// signatures of each type in our batch, but we can still
/// amortize computation nicely in one multiscalar multiplication:
///
/// h_G * ( [-sum(z_i * s_i): i_type == SpendAuth]P_SpendAuth + [-sum(z_i * s_i): i_type == Binding]P_Binding + sum(\[z_i\]R_i) + sum([z_i * c_i]VK_i) ) = 0_G
///
/// As follows elliptic curve scalar multiplication convention,
/// scalar variables are lowercase and group point variables
/// are uppercase. This does not exactly match the RedDSA
/// notation in the [protocol specification §B.1][ps].
///
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#reddsabatchverify
#[allow(non_snake_case)]
pub fn verify<R: RngCore + CryptoRng>(self, mut rng: R) -> Result<(), Error> {
let n = self.signatures.len();
let mut VK_coeffs = Vec::with_capacity(n);
let mut VKs = Vec::with_capacity(n);
let mut R_coeffs = Vec::with_capacity(self.signatures.len());
let mut Rs = Vec::with_capacity(self.signatures.len());
let mut P_spendauth_coeff = pallas::Scalar::zero();
let mut P_binding_coeff = pallas::Scalar::zero();
for item in self.signatures.iter() {
let (s_bytes, r_bytes, c) = match item.inner {
Inner::SpendAuth { sig, c, .. } => (sig.s_bytes, sig.r_bytes, c),
Inner::Binding { sig, c, .. } => (sig.s_bytes, sig.r_bytes, c),
};
let s = {
// XXX-pallas: should not use CtOption here
let maybe_scalar = pallas::Scalar::from_repr(*s_bytes);
if maybe_scalar.is_some().into() {
maybe_scalar.unwrap()
} else {
return Err(Error::InvalidSignature);
}
};
let R = {
// XXX-pallas: should not use CtOption here
// XXX-pallas: inconsistent ownership in from_bytes
let maybe_point = pallas::Affine::from_bytes(&r_bytes);
if maybe_point.is_some().into() {
pallas::Point::from(maybe_point.unwrap())
} else {
return Err(Error::InvalidSignature);
}
};
let VK = match item.inner {
Inner::SpendAuth { vk_bytes, .. } => {
// # Consensus
//
// > Elements of an Action description MUST be canonical encodings of the types given above.
//
// https://zips.z.cash/protocol/protocol.pdf#actiondesc
//
// This validates the `rk` element, whose type is
// SpendAuthSig^{Orchard}.Public, i.e. .
VerificationKey::<SpendAuth>::try_from(*vk_bytes.bytes)?.point
}
Inner::Binding { vk_bytes, .. } => {
VerificationKey::<Binding>::try_from(*vk_bytes.bytes)?.point
}
};
let z = pallas::Scalar::from_raw(gen_128_bits(&mut rng));
let P_coeff = z * s;
match item.inner {
Inner::SpendAuth { .. } => {
P_spendauth_coeff -= P_coeff;
}
Inner::Binding { .. } => {
P_binding_coeff -= P_coeff;
}
};
R_coeffs.push(z);
Rs.push(R);
VK_coeffs.push(z * c);
VKs.push(VK);
}
use std::iter::once;
let scalars = once(&P_spendauth_coeff)
.chain(once(&P_binding_coeff))
.chain(VK_coeffs.iter())
.chain(R_coeffs.iter());
let basepoints = [SpendAuth::basepoint(), Binding::basepoint()];
let points = basepoints.iter().chain(VKs.iter()).chain(Rs.iter());
let check = pallas::Point::vartime_multiscalar_mul(scalars, points);
if check.is_identity().into() {
Ok(())
} else {
Err(Error::InvalidSignature)
}
}
}

View File

@ -1,24 +0,0 @@
// -*- mode: rust; -*-
//
// This file is part of redpallas.
// Copyright (c) 2019-2021 Zcash Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Deirdre Connolly <deirdre@zfnd.org>
/// The byte-encoding of the basepoint for `SpendAuthSig` on the [Pallas curve][pallasandvesta].
///
/// [pallasandvesta]: https://zips.z.cash/protocol/nu5.pdf#pallasandvesta
// Reproducible by pallas::Point::hash_to_curve("z.cash:Orchard")(b"G").to_bytes()
pub const SPENDAUTHSIG_BASEPOINT_BYTES: [u8; 32] = [
99, 201, 117, 184, 132, 114, 26, 141, 12, 161, 112, 123, 227, 12, 127, 12, 95, 68, 95, 62, 124,
24, 141, 59, 6, 214, 241, 40, 179, 35, 85, 183,
];
/// The byte-encoding of the basepoint for `BindingSig` on the Pallas curve.
// Reproducible by pallas::Point::hash_to_curve("z.cash:Orchard-cv")(b"r").to_bytes()
pub const BINDINGSIG_BASEPOINT_BYTES: [u8; 32] = [
145, 90, 60, 136, 104, 198, 195, 14, 47, 128, 144, 238, 69, 215, 110, 64, 72, 32, 141, 234, 91,
35, 102, 79, 187, 9, 164, 15, 85, 68, 244, 7,
];

View File

@ -1,11 +0,0 @@
use thiserror::Error;
#[derive(Error, Debug, Copy, Clone, Eq, PartialEq)]
pub enum Error {
#[error("Malformed signing key encoding.")]
MalformedSigningKey,
#[error("Malformed verification key encoding.")]
MalformedVerificationKey,
#[error("Invalid signature.")]
InvalidSignature,
}

View File

@ -1,40 +0,0 @@
// -*- mode: rust; -*-
//
// This file is part of redpallas.
// Copyright (c) 2019-2021 Zcash Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Deirdre Connolly <deirdre@zfnd.org>
// - Henry de Valence <hdevalence@hdevalence.ca>
use blake2b_simd::{Params, State};
use halo2::{arithmetic::FieldExt, pasta::pallas::Scalar};
/// Provides H^star, the hash-to-scalar function used by RedPallas.
pub struct HStar {
state: State,
}
impl Default for HStar {
fn default() -> Self {
let state = Params::new()
.hash_length(64)
.personal(b"Zcash_RedPallasH")
.to_state();
Self { state }
}
}
impl HStar {
/// Add `data` to the hash, and return `Self` for chaining.
pub fn update(&mut self, data: impl AsRef<[u8]>) -> &mut Self {
self.state.update(data.as_ref());
self
}
/// Consume `self` to compute the hash output.
pub fn finalize(&self) -> Scalar {
Scalar::from_bytes_wide(self.state.finalize().as_array())
}
}

View File

@ -1,212 +0,0 @@
// -*- mode: rust; -*-
//
// This file is part of redpallas.
// Copyright (c) 2019-2021 Zcash Foundation
// Copyright (c) 2017-2021 isis agora lovecruft, Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
// - Deirdre Connolly <deirdre@zfnd.org>
//! Traits and types that support variable-time multiscalar multiplication with
//! the [Pallas][pallas] curve.
use std::{borrow::Borrow, fmt::Debug};
use group::{ff::PrimeField, Group};
use halo2::pasta::pallas;
/// A trait to support getting the Non-Adjacent form of a scalar.
pub trait NonAdjacentForm {
fn non_adjacent_form(&self, w: usize) -> [i8; 256];
}
/// A trait for variable-time multiscalar multiplication without precomputation.
pub trait VartimeMultiscalarMul {
/// The type of point being multiplied, e.g., `AffinePoint`.
type Point;
/// Given an iterator of public scalars and an iterator of
/// `Option`s of points, compute either `Some(Q)`, where
/// $$
/// Q = c\_1 P\_1 + \cdots + c\_n P\_n,
/// $$
/// if all points were `Some(P_i)`, or else return `None`.
fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<Self::Point>
where
I: IntoIterator,
I::Item: Borrow<pallas::Scalar>,
J: IntoIterator<Item = Option<Self::Point>>;
/// Given an iterator of public scalars and an iterator of
/// public points, compute
/// $$
/// Q = c\_1 P\_1 + \cdots + c\_n P\_n,
/// $$
/// using variable-time operations.
///
/// It is an error to call this function with two iterators of different lengths.
fn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self::Point
where
I: IntoIterator,
I::Item: Borrow<pallas::Scalar>,
J: IntoIterator,
J::Item: Borrow<Self::Point>,
Self::Point: Clone,
{
Self::optional_multiscalar_mul(
scalars,
points.into_iter().map(|p| Some(p.borrow().clone())),
)
.unwrap()
}
}
impl NonAdjacentForm for pallas::Scalar {
/// Compute a width-\\(w\\) "Non-Adjacent Form" of this scalar.
///
/// Thanks to [`curve25519-dalek`].
///
/// [`curve25519-dalek`]: https://github.com/dalek-cryptography/curve25519-dalek/blob/3e189820da03cc034f5fa143fc7b2ccb21fffa5e/src/scalar.rs#L907
fn non_adjacent_form(&self, w: usize) -> [i8; 256] {
// required by the NAF definition
debug_assert!(w >= 2);
// required so that the NAF digits fit in i8
debug_assert!(w <= 8);
use byteorder::{ByteOrder, LittleEndian};
let mut naf = [0i8; 256];
let mut x_u64 = [0u64; 5];
LittleEndian::read_u64_into(&self.to_repr(), &mut x_u64[0..4]);
let width = 1 << w;
let window_mask = width - 1;
let mut pos = 0;
let mut carry = 0;
while pos < 256 {
// Construct a buffer of bits of the scalar, starting at bit `pos`
let u64_idx = pos / 64;
let bit_idx = pos % 64;
let bit_buf: u64 = if bit_idx < 64 - w {
// This window's bits are contained in a single u64
x_u64[u64_idx] >> bit_idx
} else {
// Combine the current u64's bits with the bits from the next u64
(x_u64[u64_idx] >> bit_idx) | (x_u64[1 + u64_idx] << (64 - bit_idx))
};
// Add the carry into the current window
let window = carry + (bit_buf & window_mask);
if window & 1 == 0 {
// If the window value is even, preserve the carry and continue.
// Why is the carry preserved?
// If carry == 0 and window & 1 == 0, then the next carry should be 0
// If carry == 1 and window & 1 == 0, then bit_buf & 1 == 1 so the next carry should be 1
pos += 1;
continue;
}
if window < width / 2 {
carry = 0;
naf[pos] = window as i8;
} else {
carry = 1;
naf[pos] = (window as i8).wrapping_sub(width as i8);
}
pos += w;
}
naf
}
}
/// Holds odd multiples 1A, 3A, ..., 15A of a point A.
#[derive(Copy, Clone)]
pub(crate) struct LookupTable5<T>(pub(crate) [T; 8]);
impl<T: Copy> LookupTable5<T> {
/// Given public, odd \\( x \\) with \\( 0 < x < 2^4 \\), return \\(xA\\).
pub fn select(&self, x: usize) -> T {
debug_assert_eq!(x & 1, 1);
debug_assert!(x < 16);
self.0[x / 2]
}
}
impl<T: Debug> Debug for LookupTable5<T> {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "LookupTable5({:?})", self.0)
}
}
impl<'a> From<&'a pallas::Point> for LookupTable5<pallas::Point> {
#[allow(non_snake_case)]
fn from(A: &'a pallas::Point) -> Self {
let mut Ai = [*A; 8];
let A2 = A.double();
for i in 0..7 {
Ai[i + 1] = A2 + Ai[i];
}
// Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]
LookupTable5(Ai)
}
}
impl VartimeMultiscalarMul for pallas::Point {
type Point = pallas::Point;
/// Variable-time multiscalar multiplication using a non-adjacent form of
/// width (5).
///
/// The non-adjacent form has signed, odd digits. Using only odd digits
/// halves the table size (since we only need odd multiples), or gives fewer
/// additions for the same table size.
///
/// As the name implies, the runtime varies according to the values of the
/// inputs, thus is not safe for computing over secret data, but is great
/// for computing over public data, such as validating signatures.
#[allow(non_snake_case)]
#[allow(clippy::comparison_chain)]
fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<pallas::Point>
where
I: IntoIterator,
I::Item: Borrow<pallas::Scalar>,
J: IntoIterator<Item = Option<pallas::Point>>,
{
let nafs: Vec<_> = scalars
.into_iter()
.map(|c| c.borrow().non_adjacent_form(5))
.collect();
let lookup_tables = points
.into_iter()
.map(|P_opt| P_opt.map(|P| LookupTable5::<pallas::Point>::from(&P)))
.collect::<Option<Vec<_>>>()?;
let mut r = pallas::Point::identity();
for i in (0..256).rev() {
let mut t = r.double();
for (naf, lookup_table) in nafs.iter().zip(lookup_tables.iter()) {
if naf[i] > 0 {
t += lookup_table.select(naf[i] as usize);
} else if naf[i] < 0 {
t -= lookup_table.select(-naf[i] as usize);
}
}
r = t;
}
Some(r)
}
}

View File

@ -1,62 +0,0 @@
// -*- mode: rust; -*-
//
// This file is part of redpallas.
// Copyright (c) 2019-2021 Zcash Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Henry de Valence <hdevalence@hdevalence.ca>
// - Deirdre Connolly <deirdre@zfnd.org>
use std::{io, marker::PhantomData};
use super::SigType;
use crate::{
fmt::HexDebug,
serialization::{ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize},
};
/// A RedPallas signature.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Deserialize, Serialize)]
pub struct Signature<T: SigType> {
pub(crate) r_bytes: HexDebug<[u8; 32]>,
pub(crate) s_bytes: HexDebug<[u8; 32]>,
pub(crate) _marker: PhantomData<T>,
}
impl<T: SigType> From<[u8; 64]> for Signature<T> {
fn from(bytes: [u8; 64]) -> Signature<T> {
let mut r_bytes = [0; 32];
r_bytes.copy_from_slice(&bytes[0..32]);
let mut s_bytes = [0; 32];
s_bytes.copy_from_slice(&bytes[32..64]);
Signature {
r_bytes: r_bytes.into(),
s_bytes: s_bytes.into(),
_marker: PhantomData,
}
}
}
impl<T: SigType> From<Signature<T>> for [u8; 64] {
fn from(sig: Signature<T>) -> [u8; 64] {
let mut bytes = [0; 64];
bytes[0..32].copy_from_slice(&sig.r_bytes[..]);
bytes[32..64].copy_from_slice(&sig.s_bytes[..]);
bytes
}
}
impl<T: SigType> ZcashSerialize for Signature<T> {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
writer.write_all(&<[u8; 64]>::from(*self)[..])?;
Ok(())
}
}
impl<T: SigType> ZcashDeserialize for Signature<T> {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
Ok(reader.read_64_bytes()?.into())
}
}

View File

@ -1,126 +0,0 @@
//! Redpallas signing keys for Zebra.
use std::marker::PhantomData;
use group::{ff::PrimeField, GroupEncoding};
use halo2::{arithmetic::FieldExt, pasta::pallas};
use rand_core::{CryptoRng, RngCore};
use super::{Error, SigType, Signature, SpendAuth, VerificationKey};
/// A RedPallas signing key.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(try_from = "SerdeHelper"))]
#[cfg_attr(feature = "serde", serde(into = "SerdeHelper"))]
#[cfg_attr(feature = "serde", serde(bound = "T: SigType"))]
pub struct SigningKey<T: SigType> {
sk: pallas::Scalar,
pk: VerificationKey<T>,
}
impl<'a, T: SigType> From<&'a SigningKey<T>> for VerificationKey<T> {
fn from(sk: &'a SigningKey<T>) -> VerificationKey<T> {
sk.pk
}
}
impl<T: SigType> From<SigningKey<T>> for [u8; 32] {
fn from(sk: SigningKey<T>) -> [u8; 32] {
sk.sk.to_repr()
}
}
impl<T: SigType> TryFrom<[u8; 32]> for SigningKey<T> {
type Error = Error;
fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
let maybe_sk = pallas::Scalar::from_repr(bytes);
if maybe_sk.is_some().into() {
let sk = maybe_sk.unwrap();
let pk = VerificationKey::from_scalar(&sk);
Ok(SigningKey { sk, pk })
} else {
Err(Error::MalformedSigningKey)
}
}
}
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct SerdeHelper([u8; 32]);
impl<T: SigType> TryFrom<SerdeHelper> for SigningKey<T> {
type Error = Error;
fn try_from(helper: SerdeHelper) -> Result<Self, Self::Error> {
helper.0.try_into()
}
}
impl<T: SigType> From<SigningKey<T>> for SerdeHelper {
fn from(sk: SigningKey<T>) -> Self {
Self(sk.into())
}
}
impl SigningKey<SpendAuth> {
/// Randomize this public key with the given `randomizer`.
pub fn randomize(&self, randomizer: &pallas::Scalar) -> SigningKey<SpendAuth> {
let sk = self.sk + randomizer;
let pk = VerificationKey::from_scalar(&sk);
SigningKey { sk, pk }
}
}
impl<T: SigType> SigningKey<T> {
/// Generate a new signing key.
pub fn new<R: RngCore + CryptoRng>(mut rng: R) -> SigningKey<T> {
let sk = {
let mut bytes = [0; 64];
rng.fill_bytes(&mut bytes);
pallas::Scalar::from_bytes_wide(&bytes)
};
let pk = VerificationKey::from_scalar(&sk);
SigningKey { sk, pk }
}
/// Create a signature of type `T` on `msg` using this `SigningKey`.
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretereddsa>
// Similar to signature::Signer but without boxed errors.
pub fn sign<R: RngCore + CryptoRng>(&self, mut rng: R, msg: &[u8]) -> Signature<T> {
use super::HStar;
// RedDSA.GenRandom:() → R RedDSA.Random
// Choose a byte sequence uniformly at random of length
// (\ell_H + 128)/8 bytes. For RedPallas this is (512 + 128)/8 = 80.
let random_bytes = {
let mut bytes = [0; 80];
rng.fill_bytes(&mut bytes);
bytes
};
let nonce = HStar::default()
.update(&random_bytes[..])
.update(&self.pk.bytes.bytes[..]) // XXX ugly
.update(msg)
.finalize();
let r_bytes = pallas::Affine::from(T::basepoint() * nonce).to_bytes();
let c = HStar::default()
.update(&r_bytes[..])
.update(&self.pk.bytes.bytes[..]) // XXX ugly
.update(msg)
.finalize();
let s_bytes = (nonce + (c * self.sk)).to_repr();
Signature {
r_bytes: r_bytes.into(),
s_bytes: s_bytes.into(),
_marker: PhantomData,
}
}
}

View File

@ -1,3 +0,0 @@
mod basepoints;
mod batch;
mod prop;

View File

@ -1,22 +0,0 @@
use group::GroupEncoding;
use halo2::pasta::{arithmetic::CurveExt, pallas};
use super::super::constants;
#[test]
fn orchard_spendauth_basepoint() {
assert_eq!(
// An instance of _GroupHash^P_
pallas::Point::hash_to_curve("z.cash:Orchard")(b"G").to_bytes(),
constants::SPENDAUTHSIG_BASEPOINT_BYTES
);
}
#[test]
fn orchard_binding_basepoint() {
assert_eq!(
// An instance of _GroupHash^P_
pallas::Point::hash_to_curve("z.cash:Orchard-cv")(b"r").to_bytes(),
constants::BINDINGSIG_BASEPOINT_BYTES
);
}

View File

@ -1,141 +0,0 @@
use rand::thread_rng;
use super::super::*;
#[test]
fn spendauth_batch_verify() {
let mut rng = thread_rng();
let mut batch = batch::Verifier::new();
for _ in 0..32 {
let sk = SigningKey::<SpendAuth>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let msg = b"BatchVerifyTest";
let sig = sk.sign(&mut rng, &msg[..]);
batch.queue((vk.into(), sig, msg));
}
assert!(batch.verify(rng).is_ok());
}
#[test]
fn binding_batch_verify() {
let mut rng = thread_rng();
let mut batch = batch::Verifier::new();
for _ in 0..32 {
let sk = SigningKey::<Binding>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let msg = b"BatchVerifyTest";
let sig = sk.sign(&mut rng, &msg[..]);
batch.queue((vk.into(), sig, msg));
}
assert!(batch.verify(rng).is_ok());
}
#[test]
fn alternating_batch_verify() {
let mut rng = thread_rng();
let mut batch = batch::Verifier::new();
for i in 0..32 {
let item: batch::Item = match i % 2 {
0 => {
let sk = SigningKey::<SpendAuth>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let msg = b"BatchVerifyTest";
let sig = sk.sign(&mut rng, &msg[..]);
(vk.into(), sig, msg).into()
}
1 => {
let sk = SigningKey::<Binding>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let msg = b"BatchVerifyTest";
let sig = sk.sign(&mut rng, &msg[..]);
(vk.into(), sig, msg).into()
}
_ => unreachable!(),
};
batch.queue(item);
}
assert!(batch.verify(rng).is_ok());
}
#[test]
fn bad_spendauth_in_batch_verify() {
let mut rng = thread_rng();
let bad_index = 4; // must be even
let mut batch = batch::Verifier::new();
let mut items = Vec::new();
for i in 0..32 {
let item: batch::Item = match i % 2 {
0 => {
let sk = SigningKey::<SpendAuth>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let msg = b"BatchVerifyTest";
let sig = if i != bad_index {
sk.sign(&mut rng, &msg[..])
} else {
sk.sign(&mut rng, b"bad")
};
(vk.into(), sig, msg).into()
}
1 => {
let sk = SigningKey::<Binding>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let msg = b"BatchVerifyTest";
let sig = sk.sign(&mut rng, &msg[..]);
(vk.into(), sig, msg).into()
}
_ => unreachable!(),
};
items.push(item.clone());
batch.queue(item);
}
assert!(batch.verify(rng).is_err());
for (i, item) in items.drain(..).enumerate() {
if i != bad_index {
assert!(item.verify_single().is_ok());
} else {
assert!(item.verify_single().is_err());
}
}
}
#[test]
fn bad_binding_in_batch_verify() {
let mut rng = thread_rng();
let bad_index = 3; // must be odd
let mut batch = batch::Verifier::new();
let mut items = Vec::new();
for i in 0..32 {
let item: batch::Item = match i % 2 {
0 => {
let sk = SigningKey::<SpendAuth>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let msg = b"BatchVerifyTest";
let sig = sk.sign(&mut rng, &msg[..]);
(vk.into(), sig, msg).into()
}
1 => {
let sk = SigningKey::<Binding>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let msg = b"BatchVerifyTest";
let sig = if i != bad_index {
sk.sign(&mut rng, &msg[..])
} else {
sk.sign(&mut rng, b"bad")
};
(vk.into(), sig, msg).into()
}
_ => unreachable!(),
};
items.push(item.clone());
batch.queue(item);
}
assert!(batch.verify(rng).is_err());
for (i, item) in items.drain(..).enumerate() {
if i != bad_index {
assert!(item.verify_single().is_ok());
} else {
assert!(item.verify_single().is_err());
}
}
}

View File

@ -1,150 +0,0 @@
use std::convert::TryFrom;
use halo2::arithmetic::FieldExt;
use proptest::prelude::*;
use rand_chacha::ChaChaRng;
use rand_core::{CryptoRng, RngCore, SeedableRng};
use super::super::SigningKey;
use super::super::*;
/// A signature test-case, containing signature data and expected validity.
#[derive(Clone, Debug)]
struct SignatureCase<T: SigType> {
msg: Vec<u8>,
sig: Signature<T>,
pk_bytes: VerificationKeyBytes<T>,
invalid_pk_bytes: VerificationKeyBytes<T>,
is_valid: bool,
}
/// A modification to a test-case.
#[derive(Copy, Clone, Debug)]
enum Tweak {
/// No-op, used to check that unchanged cases verify.
None,
/// Change the message the signature is defined for, invalidating the signature.
ChangeMessage,
/// Change the public key the signature is defined for, invalidating the signature.
ChangePubkey,
/* XXX implement this -- needs to regenerate a custom signature because the
nonce commitment is fed into the hash, so it has to have torsion at signing
time.
/// Change the case to have a torsion component in the signature's `r` value.
AddTorsion,
*/
/* XXX implement this -- needs custom handling of field arithmetic.
/// Change the signature's `s` scalar to be unreduced (mod L), invalidating the signature.
UnreducedScalar,
*/
}
impl<T: SigType> SignatureCase<T> {
fn new<R: RngCore + CryptoRng>(mut rng: R, msg: Vec<u8>) -> Self {
let sk = SigningKey::new(&mut rng);
let sig = sk.sign(&mut rng, &msg);
let pk_bytes = VerificationKey::from(&sk).into();
let invalid_pk_bytes = VerificationKey::from(&SigningKey::new(&mut rng)).into();
Self {
msg,
sig,
pk_bytes,
invalid_pk_bytes,
is_valid: true,
}
}
// Check that signature verification succeeds or fails, as expected.
fn check(&self) -> bool {
// The signature data is stored in (refined) byte types, but do a round trip
// conversion to raw bytes to exercise those code paths.
let sig = {
let bytes: [u8; 64] = self.sig.into();
Signature::<T>::from(bytes)
};
let pk_bytes = {
let bytes: [u8; 32] = self.pk_bytes.into();
VerificationKeyBytes::<T>::from(bytes)
};
// Check that the verification key is a valid RedPallas verification key.
let pub_key = VerificationKey::try_from(pk_bytes)
.expect("The test verification key to be well-formed.");
// Check that signature validation has the expected result.
self.is_valid == pub_key.verify(&self.msg, &sig).is_ok()
}
fn apply_tweak(&mut self, tweak: &Tweak) {
match tweak {
Tweak::None => {}
Tweak::ChangeMessage => {
// Changing the message makes the signature invalid.
self.msg.push(90);
self.is_valid = false;
}
Tweak::ChangePubkey => {
// Changing the public key makes the signature invalid.
self.pk_bytes = self.invalid_pk_bytes;
self.is_valid = false;
}
}
}
}
fn tweak_strategy() -> impl Strategy<Value = Tweak> {
prop_oneof![
10 => Just(Tweak::None),
1 => Just(Tweak::ChangeMessage),
1 => Just(Tweak::ChangePubkey),
]
}
proptest! {
#[test]
fn tweak_signature(
tweaks in prop::collection::vec(tweak_strategy(), (0,5)),
rng_seed in prop::array::uniform32(any::<u8>()),
) {
// Use a deterministic RNG so that test failures can be reproduced.
let mut rng = ChaChaRng::from_seed(rng_seed);
// Create a test case for each signature type.
let msg = b"test message for proptests";
let mut binding = SignatureCase::<Binding>::new(&mut rng, msg.to_vec());
let mut spendauth = SignatureCase::<SpendAuth>::new(&mut rng, msg.to_vec());
// Apply tweaks to each case.
for t in &tweaks {
binding.apply_tweak(t);
spendauth.apply_tweak(t);
}
assert!(binding.check());
assert!(spendauth.check());
}
#[test]
fn randomization_commutes_with_pubkey_homomorphism(rng_seed in prop::array::uniform32(any::<u8>())) {
// Use a deterministic RNG so that test failures can be reproduced.
let mut rng = ChaChaRng::from_seed(rng_seed);
let r = {
// XXX-pasta_curves: better API for this
let mut bytes = [0; 64];
rng.fill_bytes(&mut bytes[..]);
Randomizer::from_bytes_wide(&bytes)
};
let sk = SigningKey::<SpendAuth>::new(&mut rng);
let pk = VerificationKey::from(&sk);
let sk_r = sk.randomize(&r);
let pk_r = pk.randomize(&r);
let pk_r_via_sk_rand: [u8; 32] = VerificationKeyBytes::from(VerificationKey::from(&sk_r)).into();
let pk_r_via_pk_rand: [u8; 32] = VerificationKeyBytes::from(pk_r).into();
assert_eq!(pk_r_via_pk_rand, pk_r_via_sk_rand);
}
}

View File

@ -1,182 +0,0 @@
//! Redpallas verification keys for Zebra.
use std::marker::PhantomData;
use group::{cofactor::CofactorGroup, ff::PrimeField, GroupEncoding};
use halo2::pasta::pallas;
use crate::fmt::HexDebug;
use super::*;
/// A refinement type for `[u8; 32]` indicating that the bytes represent
/// an encoding of a RedPallas verification key.
///
/// This is useful for representing a compressed verification key; the
/// [`VerificationKey`] type in this library holds other decompressed state
/// used in signature verification.
#[derive(Copy, Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
pub struct VerificationKeyBytes<T: SigType> {
pub(crate) bytes: HexDebug<[u8; 32]>,
pub(crate) _marker: PhantomData<T>,
}
impl<T: SigType> From<[u8; 32]> for VerificationKeyBytes<T> {
fn from(bytes: [u8; 32]) -> VerificationKeyBytes<T> {
VerificationKeyBytes {
bytes: bytes.into(),
_marker: PhantomData,
}
}
}
impl<T: SigType> From<VerificationKeyBytes<T>> for [u8; 32] {
fn from(refined: VerificationKeyBytes<T>) -> [u8; 32] {
*refined.bytes
}
}
// TODO: impl Hash for VerificationKeyBytes, or import that impl: https://github.com/ZcashFoundation/zebra/issues/2044
/// A valid RedPallas verification key.
///
/// This type holds decompressed state used in signature verification; if the
/// verification key may not be used immediately, it is probably better to use
/// [`VerificationKeyBytes`], which is a refinement type for `[u8; 32]`.
///
/// ## Consensus properties
///
/// The `TryFrom<VerificationKeyBytes>` conversion performs the following Zcash
/// consensus rule checks:
///
/// 1. The check that the bytes are a canonical encoding of a verification key;
/// 2. The check that the verification key is not a point of small order.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(try_from = "VerificationKeyBytes<T>"))]
#[cfg_attr(feature = "serde", serde(into = "VerificationKeyBytes<T>"))]
#[cfg_attr(feature = "serde", serde(bound = "T: SigType"))]
pub struct VerificationKey<T: SigType> {
pub(crate) point: pallas::Point,
pub(crate) bytes: VerificationKeyBytes<T>,
}
impl<T: SigType> From<VerificationKey<T>> for VerificationKeyBytes<T> {
fn from(pk: VerificationKey<T>) -> VerificationKeyBytes<T> {
pk.bytes
}
}
impl<T: SigType> From<VerificationKey<T>> for [u8; 32] {
fn from(pk: VerificationKey<T>) -> [u8; 32] {
*pk.bytes.bytes
}
}
impl<T: SigType> TryFrom<VerificationKeyBytes<T>> for VerificationKey<T> {
type Error = Error;
fn try_from(bytes: VerificationKeyBytes<T>) -> Result<Self, Self::Error> {
// This checks that the encoding is canonical...
let maybe_point = pallas::Affine::from_bytes(&bytes.bytes);
if maybe_point.is_some().into() {
let point: pallas::Point = maybe_point.unwrap().into();
// This checks that the verification key is not of small order.
if !<bool>::from(point.is_small_order()) {
Ok(VerificationKey { point, bytes })
} else {
Err(Error::MalformedVerificationKey)
}
} else {
Err(Error::MalformedVerificationKey)
}
}
}
impl<T: SigType> TryFrom<[u8; 32]> for VerificationKey<T> {
type Error = Error;
fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
VerificationKeyBytes::from(bytes).try_into()
}
}
impl VerificationKey<SpendAuth> {
/// Randomize this verification key with the given `randomizer`.
///
/// Randomization is only supported for `SpendAuth` keys.
pub fn randomize(&self, randomizer: &Randomizer) -> VerificationKey<SpendAuth> {
use super::private::Sealed;
let point = self.point + (SpendAuth::basepoint() * randomizer);
let bytes = VerificationKeyBytes {
bytes: point.to_bytes().into(),
_marker: PhantomData,
};
VerificationKey { point, bytes }
}
}
impl<T: SigType> VerificationKey<T> {
pub(crate) fn from_scalar(s: &pallas::Scalar) -> VerificationKey<T> {
let point = T::basepoint() * s;
let bytes = VerificationKeyBytes {
bytes: point.to_bytes().into(),
_marker: PhantomData,
};
VerificationKey { point, bytes }
}
/// Verify a purported `signature` over `msg` made by this verification key.
// This is similar to impl signature::Verifier but without boxed errors
pub fn verify(&self, msg: &[u8], signature: &Signature<T>) -> Result<(), Error> {
let c = HStar::default()
.update(&signature.r_bytes[..])
.update(&self.bytes.bytes[..]) // XXX ugly
.update(msg)
.finalize();
self.verify_prehashed(signature, c)
}
/// Verify a purported `signature` with a prehashed challenge.
#[allow(non_snake_case)]
pub(crate) fn verify_prehashed(
&self,
signature: &Signature<T>,
c: pallas::Scalar,
) -> Result<(), Error> {
let r = {
// XXX-pasta_curves: should not use CtOption here
let maybe_point = pallas::Affine::from_bytes(&signature.r_bytes);
if maybe_point.is_some().into() {
pallas::Point::from(maybe_point.unwrap())
} else {
return Err(Error::InvalidSignature);
}
};
let s = {
// XXX-pasta_curves: should not use CtOption here
let maybe_scalar = pallas::Scalar::from_repr(*signature.s_bytes);
if maybe_scalar.is_some().into() {
maybe_scalar.unwrap()
} else {
return Err(Error::InvalidSignature);
}
};
// XXX rewrite as normal double scalar mul
// Verify check is h * ( - s * B + R + c * A) == 0
// h * ( s * B - c * A - R) == 0
let sB = T::basepoint() * s;
let cA = self.point * c;
let check = sB - cA - r;
if check.is_small_order().into() {
Ok(())
} else {
Err(Error::InvalidSignature)
}
}
}

View File

@ -12,6 +12,7 @@ use chrono::{TimeZone, Utc};
use proptest::{
arbitrary::any, array, collection::vec, option, prelude::*, test_runner::TestRunner,
};
use reddsa::{orchard::Binding, Signature};
use crate::{
amount::{self, Amount, NegativeAllowed, NonNegative},
@ -19,10 +20,7 @@ use crate::{
block::{self, arbitrary::MAX_PARTIAL_CHAIN_BLOCKS},
orchard,
parameters::{Network, NetworkUpgrade},
primitives::{
redpallas::{Binding, Signature},
Bctv14Proof, Groth16Proof, Halo2Proof, ZkSnarkProof,
},
primitives::{Bctv14Proof, Groth16Proof, Halo2Proof, ZkSnarkProof},
sapling::{self, AnchorVariant, PerSpendAnchor, SharedAnchor},
serialization::ZcashDeserializeInto,
sprout, transparent,
@ -696,7 +694,7 @@ impl Arbitrary for orchard::ShieldedData {
any::<orchard::shielded_data::AuthorizedAction>(),
1..MAX_ARBITRARY_ITEMS,
),
any::<Signature<Binding>>(),
any::<BindingSignature>(),
)
.prop_map(
|(flags, value_balance, shared_anchor, proof, actions, binding_sig)| Self {
@ -707,7 +705,7 @@ impl Arbitrary for orchard::ShieldedData {
actions: actions
.try_into()
.expect("arbitrary vector size range produces at least one action"),
binding_sig,
binding_sig: binding_sig.0,
},
)
.boxed()
@ -716,7 +714,10 @@ impl Arbitrary for orchard::ShieldedData {
type Strategy = BoxedStrategy<Self>;
}
impl Arbitrary for Signature<Binding> {
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct BindingSignature(pub(crate) Signature<Binding>);
impl Arbitrary for BindingSignature {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
@ -729,7 +730,7 @@ impl Arbitrary for Signature<Binding> {
if b == [0u8; 64] {
return None;
}
Some(Signature::<Binding>::from(b))
Some(BindingSignature(Signature::<Binding>::from(b)))
},
)
.boxed()

View File

@ -6,15 +6,13 @@ use std::{borrow::Borrow, convert::TryInto, io, sync::Arc};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use halo2::pasta::{group::ff::PrimeField, pallas};
use hex::FromHex;
use reddsa::{orchard::Binding, orchard::SpendAuth, Signature};
use crate::{
amount,
block::MAX_BLOCK_BYTES,
parameters::{OVERWINTER_VERSION_GROUP_ID, SAPLING_VERSION_GROUP_ID, TX_V5_VERSION_GROUP_ID},
primitives::{
redpallas::{Binding, Signature, SpendAuth},
Groth16Proof, Halo2Proof, ZkSnarkProof,
},
primitives::{Groth16Proof, Halo2Proof, ZkSnarkProof},
serialization::{
zcash_deserialize_external_count, zcash_serialize_empty_list,
zcash_serialize_external_count, AtLeastOne, ReadZcashExt, SerializationError,
@ -448,6 +446,19 @@ impl ZcashDeserialize for Option<orchard::ShieldedData> {
}
}
impl<T: reddsa::SigType> ZcashSerialize for reddsa::Signature<T> {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
writer.write_all(&<[u8; 64]>::from(*self)[..])?;
Ok(())
}
}
impl<T: reddsa::SigType> ZcashDeserialize for reddsa::Signature<T> {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
Ok(reader.read_64_bytes()?.into())
}
}
impl ZcashSerialize for Transaction {
#[allow(clippy::unwrap_in_result)]
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {

View File

@ -149,7 +149,7 @@ pub enum TransactionError {
#[error("Orchard bindingSig MUST represent a valid signature under the transaction binding validating key bvk of SigHash")]
#[cfg_attr(any(test, feature = "proptest-impl"), proptest(skip))]
RedPallas(zebra_chain::primitives::redpallas::Error),
RedPallas(zebra_chain::primitives::reddsa::Error),
// temporary error type until #1186 is fixed
#[error("Downcast from BoxError to redjubjub::Error failed")]

View File

@ -17,13 +17,13 @@ use tower::{util::ServiceFn, Service};
use tower_batch::{Batch, BatchControl};
use tower_fallback::Fallback;
use zebra_chain::primitives::redpallas::{batch, *};
use zebra_chain::primitives::reddsa::{batch, orchard, Error};
#[cfg(test)]
mod tests;
/// The type of the batch verifier.
type BatchVerifier = batch::Verifier;
type BatchVerifier = batch::Verifier<orchard::SpendAuth, orchard::Binding>;
/// The type of verification results.
type VerifyResult = Result<(), Error>;
@ -33,7 +33,7 @@ type Sender = watch::Sender<Option<VerifyResult>>;
/// The type of the batch item.
/// This is a `RedPallasItem`.
pub type Item = batch::Item;
pub type Item = batch::Item<orchard::SpendAuth, orchard::Binding>;
/// Global batch verification context for RedPallas signatures.
///

View File

@ -9,6 +9,11 @@ use futures::stream::{FuturesUnordered, StreamExt};
use tower::ServiceExt;
use tower_batch::Batch;
use zebra_chain::primitives::reddsa::{
orchard::{Binding, SpendAuth},
SigningKey, VerificationKey,
};
async fn sign_and_verify<V>(mut verifier: V, n: usize) -> Result<(), V::Error>
where
V: Service<Item, Response = ()>,
@ -25,14 +30,17 @@ where
let vk = VerificationKey::from(&sk);
let sig = sk.sign(&mut rng, &msg[..]);
verifier.ready().await?;
results.push(span.in_scope(|| verifier.call((vk.into(), sig, msg).into())))
results.push(
span.in_scope(|| verifier.call(Item::from_spendauth(vk.into(), sig, msg))),
)
}
1 => {
let sk = SigningKey::<Binding>::new(&mut rng);
let vk = VerificationKey::from(&sk);
let sig = sk.sign(&mut rng, &msg[..]);
verifier.ready().await?;
results.push(span.in_scope(|| verifier.call((vk.into(), sig, msg).into())))
results
.push(span.in_scope(|| verifier.call(Item::from_binding(vk.into(), sig, msg))))
}
_ => panic!(),
}

View File

@ -1020,7 +1020,7 @@ where
//
// https://zips.z.cash/protocol/protocol.pdf#actiondesc
//
// This is validated by the verifier, inside the [`primitives::redpallas`] module.
// This is validated by the verifier, inside the [`reddsa`] crate.
// It calls [`pallas::Affine::from_bytes`] to parse R and
// that enforces the canonical encoding.
//
@ -1029,11 +1029,13 @@ where
// description while adding the resulting future to
// our collection of async checks that (at a
// minimum) must pass for the transaction to verify.
async_checks.push(
primitives::redpallas::VERIFIER
.clone()
.oneshot((action.rk, spend_auth_sig, &shielded_sighash).into()),
);
async_checks.push(primitives::redpallas::VERIFIER.clone().oneshot(
primitives::redpallas::Item::from_spendauth(
action.rk,
spend_auth_sig,
&shielded_sighash,
),
));
}
let bvk = orchard_shielded_data.binding_verification_key();
@ -1062,15 +1064,17 @@ where
//
// https://zips.z.cash/protocol/protocol.pdf#txnconsensus
//
// This is validated by the verifier, inside the `redpallas` crate.
// This is validated by the verifier, inside the `reddsa` crate.
// It calls [`pallas::Affine::from_bytes`] to parse R and
// that enforces the canonical encoding.
async_checks.push(
primitives::redpallas::VERIFIER
.clone()
.oneshot((bvk, orchard_shielded_data.binding_sig, &shielded_sighash).into()),
);
async_checks.push(primitives::redpallas::VERIFIER.clone().oneshot(
primitives::redpallas::Item::from_binding(
bvk,
orchard_shielded_data.binding_sig,
&shielded_sighash,
),
));
}
Ok(async_checks)