chain: implement Bitcoin Merkle root computation
This commit is contained in:
parent
440e183d32
commit
738b5b0f1b
|
@ -30,11 +30,14 @@ pub struct Header {
|
|||
/// block’s header.
|
||||
pub previous_block_hash: Hash,
|
||||
|
||||
/// The root of the transaction Merkle tree.
|
||||
/// The root of the Bitcoin-inherited transaction Merkle tree, binding the
|
||||
/// block header to the transactions in the block.
|
||||
///
|
||||
/// The Merkle root is derived from the SHA256d hashes of all transactions
|
||||
/// included in this block as assembled in a binary tree, ensuring that none
|
||||
/// of those transactions can be modied without modifying the header.
|
||||
/// Note that because of a flaw in Bitcoin's design, the `merkle_root` does
|
||||
/// not always precisely bind the contents of the block (CVE-2012-2459). It
|
||||
/// is sometimes possible for an attacker to create multiple distinct sets of
|
||||
/// transactions with the same Merkle root, although only one set will be
|
||||
/// valid.
|
||||
pub merkle_root: merkle::Root,
|
||||
|
||||
/// Some kind of root hash.
|
||||
|
|
|
@ -1,51 +1,132 @@
|
|||
//! The Bitcoin-inherited Merkle tree of transactions.
|
||||
#![allow(clippy::unit_arg)]
|
||||
|
||||
use std::{fmt, io};
|
||||
use std::{fmt, io::Write};
|
||||
|
||||
#[cfg(any(any(test, feature = "proptest-impl"), feature = "proptest-impl"))]
|
||||
use proptest_derive::Arbitrary;
|
||||
|
||||
use crate::serialization::{sha256d, SerializationError, ZcashDeserialize, ZcashSerialize};
|
||||
use crate::transaction::Transaction;
|
||||
use crate::serialization::sha256d;
|
||||
use crate::transaction::{self, Transaction};
|
||||
|
||||
/// A binary hash tree of SHA256d (two rounds of SHA256) hashes for
|
||||
/// node values.
|
||||
#[derive(Default)]
|
||||
pub struct Tree<T> {
|
||||
_leaves: Vec<T>,
|
||||
}
|
||||
|
||||
impl<Transaction> ZcashSerialize for Tree<Transaction> {
|
||||
fn zcash_serialize<W: io::Write>(&self, _writer: W) -> Result<(), io::Error> {
|
||||
unimplemented!();
|
||||
}
|
||||
}
|
||||
|
||||
impl<Transaction> ZcashDeserialize for Tree<Transaction> {
|
||||
fn zcash_deserialize<R: io::Read>(_reader: R) -> Result<Self, SerializationError> {
|
||||
unimplemented!();
|
||||
}
|
||||
}
|
||||
|
||||
/// A SHA-256d hash of the root node of a merkle tree of SHA256-d
|
||||
/// hashed transactions in a block.
|
||||
/// The root of the Bitcoin-inherited transaction Merkle tree, binding the
|
||||
/// block header to the transactions in the block.
|
||||
///
|
||||
/// Note that because of a flaw in Bitcoin's design, the `merkle_root` does
|
||||
/// not always precisely bind the contents of the block (CVE-2012-2459). It
|
||||
/// is sometimes possible for an attacker to create multiple distinct sets of
|
||||
/// transactions with the same Merkle root, although only one set will be
|
||||
/// valid.
|
||||
///
|
||||
/// # Malleability
|
||||
///
|
||||
/// The Bitcoin source code contains the following note:
|
||||
///
|
||||
/// > WARNING! If you're reading this because you're learning about crypto
|
||||
/// > and/or designing a new system that will use merkle trees, keep in mind
|
||||
/// > that the following merkle tree algorithm has a serious flaw related to
|
||||
/// > duplicate txids, resulting in a vulnerability (CVE-2012-2459).
|
||||
/// > The reason is that if the number of hashes in the list at a given time
|
||||
/// > is odd, the last one is duplicated before computing the next level (which
|
||||
/// > is unusual in Merkle trees). This results in certain sequences of
|
||||
/// > transactions leading to the same merkle root. For example, these two
|
||||
/// > trees:
|
||||
/// >
|
||||
/// > ```ascii
|
||||
/// > A A
|
||||
/// > / \ / \
|
||||
/// > B C B C
|
||||
/// > / \ | / \ / \
|
||||
/// > D E F D E F F
|
||||
/// > / \ / \ / \ / \ / \ / \ / \
|
||||
/// > 1 2 3 4 5 6 1 2 3 4 5 6 5 6
|
||||
/// > ```
|
||||
/// >
|
||||
/// > for transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and
|
||||
/// > 6 are repeated) result in the same root hash A (because the hash of both
|
||||
/// > of (F) and (F,F) is C).
|
||||
/// >
|
||||
/// > The vulnerability results from being able to send a block with such a
|
||||
/// > transaction list, with the same merkle root, and the same block hash as
|
||||
/// > the original without duplication, resulting in failed validation. If the
|
||||
/// > receiving node proceeds to mark that block as permanently invalid
|
||||
/// > however, it will fail to accept further unmodified (and thus potentially
|
||||
/// > valid) versions of the same block. We defend against this by detecting
|
||||
/// > the case where we would hash two identical hashes at the end of the list
|
||||
/// > together, and treating that identically to the block having an invalid
|
||||
/// > merkle root. Assuming no double-SHA256 collisions, this will detect all
|
||||
/// > known ways of changing the transactions without affecting the merkle
|
||||
/// > root.
|
||||
///
|
||||
/// This vulnerability does not apply to Zebra, because it does not store invalid
|
||||
/// data on disk, and because it does not permanently fail blocks or use an
|
||||
/// aggressive anti-DoS mechanism.
|
||||
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
|
||||
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary))]
|
||||
pub struct Root(pub [u8; 32]);
|
||||
|
||||
impl From<Tree<Transaction>> for Root {
|
||||
fn from(merkle_tree: Tree<Transaction>) -> Self {
|
||||
let mut hash_writer = sha256d::Writer::default();
|
||||
merkle_tree
|
||||
.zcash_serialize(&mut hash_writer)
|
||||
.expect("Sha256dWriter is infallible");
|
||||
Self(hash_writer.finish())
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Root {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
f.debug_tuple("Root").field(&hex::encode(&self.0)).finish()
|
||||
}
|
||||
}
|
||||
|
||||
fn hash(h1: &[u8; 32], h2: &[u8; 32]) -> [u8; 32] {
|
||||
let mut w = sha256d::Writer::default();
|
||||
w.write_all(h1).unwrap();
|
||||
w.write_all(h2).unwrap();
|
||||
w.finish()
|
||||
}
|
||||
|
||||
impl<T> std::iter::FromIterator<T> for Root
|
||||
where
|
||||
T: std::convert::AsRef<Transaction>,
|
||||
{
|
||||
fn from_iter<I>(transactions: I) -> Self
|
||||
where
|
||||
I: IntoIterator<Item = T>,
|
||||
{
|
||||
transactions
|
||||
.into_iter()
|
||||
.map(|tx| tx.as_ref().hash())
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
impl std::iter::FromIterator<transaction::Hash> for Root {
|
||||
fn from_iter<I>(hashes: I) -> Self
|
||||
where
|
||||
I: IntoIterator<Item = transaction::Hash>,
|
||||
{
|
||||
let mut hashes = hashes.into_iter().map(|hash| hash.0).collect::<Vec<_>>();
|
||||
|
||||
while hashes.len() > 1 {
|
||||
hashes = hashes
|
||||
.chunks(2)
|
||||
.map(|chunk| match chunk {
|
||||
[h1, h2] => hash(h1, h2),
|
||||
[h1] => hash(h1, h1),
|
||||
_ => unreachable!("chunks(2)"),
|
||||
})
|
||||
.collect();
|
||||
}
|
||||
|
||||
Self(hashes[0])
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
use crate::{block::Block, serialization::ZcashDeserialize};
|
||||
|
||||
#[test]
|
||||
fn block_test_vectors() {
|
||||
for block_bytes in zebra_test::vectors::BLOCKS.iter() {
|
||||
let block = Block::zcash_deserialize(&**block_bytes).unwrap();
|
||||
let merkle_root = block.transactions.iter().collect::<Root>();
|
||||
assert_eq!(merkle_root, block.header.merkle_root);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue