solana/src/signature.rs

140 lines
3.9 KiB
Rust
Raw Normal View History

2018-03-30 10:43:38 -07:00
//! The `signature` module provides functionality for public, and private keys.
use generic_array::typenum::{U32, U64};
use generic_array::GenericArray;
use rand::{ChaChaRng, Rng, SeedableRng};
2018-05-12 12:42:27 -07:00
use rayon::prelude::*;
use ring::error::Unspecified;
use ring::rand::SecureRandom;
use ring::signature::Ed25519KeyPair;
use ring::{rand, signature};
2018-05-11 11:07:41 -07:00
use std::cell::RefCell;
use untrusted;
pub type KeyPair = Ed25519KeyPair;
pub type PublicKey = GenericArray<u8, U32>;
pub type Signature = GenericArray<u8, U64>;
pub trait KeyPairUtil {
fn new() -> Self;
fn pubkey(&self) -> PublicKey;
}
impl KeyPairUtil for Ed25519KeyPair {
/// Return a new ED25519 keypair
fn new() -> Self {
let rng = rand::SystemRandom::new();
2018-05-11 11:38:52 -07:00
let pkcs8_bytes = signature::Ed25519KeyPair::generate_pkcs8(&rng)
.expect("generate_pkcs8 in signature pb fn new");
signature::Ed25519KeyPair::from_pkcs8(untrusted::Input::from(&pkcs8_bytes))
.expect("from_pcks8 in signature pb fn new")
}
/// Return the public key for the given keypair
fn pubkey(&self) -> PublicKey {
GenericArray::clone_from_slice(self.public_key_bytes())
}
}
pub trait SignatureUtil {
fn verify(&self, peer_public_key_bytes: &[u8], msg_bytes: &[u8]) -> bool;
}
impl SignatureUtil for GenericArray<u8, U64> {
fn verify(&self, peer_public_key_bytes: &[u8], msg_bytes: &[u8]) -> bool {
let peer_public_key = untrusted::Input::from(peer_public_key_bytes);
let msg = untrusted::Input::from(msg_bytes);
let sig = untrusted::Input::from(self);
signature::verify(&signature::ED25519, peer_public_key, msg, sig).is_ok()
}
}
pub struct GenKeys {
2018-05-11 11:07:41 -07:00
// This is necessary because the rng needs to mutate its state to remain
// deterministic, and the fill trait requires an immuatble reference to self
generator: RefCell<ChaChaRng>,
}
impl GenKeys {
pub fn new(seed: &[u8]) -> GenKeys {
let seed32: Vec<_> = seed.iter().map(|&x| x as u32).collect();
let rng = ChaChaRng::from_seed(&seed32);
GenKeys {
2018-05-11 11:07:41 -07:00
generator: RefCell::new(rng),
}
}
pub fn new_key(&self) -> Vec<u8> {
KeyPair::generate_pkcs8(self).unwrap().to_vec()
}
pub fn gen_n_seeds(&self, n: i64) -> Vec<[u8; 16]> {
2018-05-12 12:42:27 -07:00
let mut rng = self.generator.borrow_mut();
(0..n).map(|_| rng.gen()).collect()
2018-05-12 12:42:27 -07:00
}
pub fn gen_n_keypairs(&self, n: i64) -> Vec<KeyPair> {
self.gen_n_seeds(n)
.into_par_iter()
2018-05-12 12:42:27 -07:00
.map(|seed| {
let pkcs8 = GenKeys::new(&seed).new_key();
KeyPair::from_pkcs8(untrusted::Input::from(&pkcs8)).unwrap()
})
.collect()
}
}
2018-05-13 15:14:10 -07:00
impl SecureRandom for GenKeys {
fn fill(&self, dest: &mut [u8]) -> Result<(), Unspecified> {
2018-05-11 11:07:41 -07:00
let mut rng = self.generator.borrow_mut();
rng.fill_bytes(dest);
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::collections::HashSet;
#[test]
fn test_new_key_is_deterministic() {
let seed = [1, 2, 3, 4];
let rng0 = GenKeys::new(&seed);
let rng1 = GenKeys::new(&seed);
for _ in 0..100 {
assert_eq!(rng0.new_key(), rng1.new_key());
}
}
fn gen_n_pubkeys(seed: &[u8], n: i64) -> HashSet<PublicKey> {
GenKeys::new(&seed)
.gen_n_keypairs(n)
.into_iter()
.map(|x| x.pubkey())
.collect()
}
#[test]
fn test_gen_n_pubkeys_deterministic() {
let seed = [1, 2, 3, 4];
assert_eq!(gen_n_pubkeys(&seed, 50), gen_n_pubkeys(&seed, 50));
}
}
#[cfg(all(feature = "unstable", test))]
mod bench {
extern crate test;
use self::test::Bencher;
use super::*;
#[bench]
fn bench_gen_keys(b: &mut Bencher) {
let seed: &[_] = &[1, 2, 3, 4];
let rnd = GenKeys::new(seed);
2018-05-23 16:01:28 -07:00
b.iter(|| rnd.gen_n_keypairs(1000));
}
}