+ added alternative PID controller from http://www.multiwii.com/forum/viewtopic.php?f=8&t=3671
+ this is a per-profile setting, and PIDs CHANGE from default multiwii ones. check the above forum post for PID examples. set pid_controller = 0 for default multiwii, or 1 for new one. = went back to clearing clibuffer after each command git-svn-id: https://afrodevices.googlecode.com/svn/trunk/baseflight@341 7c89a4a9-59b9-e629-4cfe-3a2d53b20e61
This commit is contained in:
parent
415600b447
commit
4e94fd07e5
|
@ -197,7 +197,7 @@
|
|||
<AdsLsun>1</AdsLsun>
|
||||
<AdsLven>1</AdsLven>
|
||||
<AdsLsxf>1</AdsLsxf>
|
||||
<RvctClst>0</RvctClst>
|
||||
<RvctClst>1</RvctClst>
|
||||
<GenPPlst>0</GenPPlst>
|
||||
<AdsCpuType>"Cortex-M3"</AdsCpuType>
|
||||
<RvctDeviceName></RvctDeviceName>
|
||||
|
@ -990,7 +990,7 @@
|
|||
<ldmm>1</ldmm>
|
||||
<ldXref>1</ldXref>
|
||||
<BigEnd>0</BigEnd>
|
||||
<AdsALst>0</AdsALst>
|
||||
<AdsALst>1</AdsALst>
|
||||
<AdsACrf>1</AdsACrf>
|
||||
<AdsANop>0</AdsANop>
|
||||
<AdsANot>0</AdsANot>
|
||||
|
@ -1003,7 +1003,7 @@
|
|||
<AdsLsun>1</AdsLsun>
|
||||
<AdsLven>1</AdsLven>
|
||||
<AdsLsxf>1</AdsLsxf>
|
||||
<RvctClst>0</RvctClst>
|
||||
<RvctClst>1</RvctClst>
|
||||
<GenPPlst>0</GenPPlst>
|
||||
<AdsCpuType>"Cortex-M3"</AdsCpuType>
|
||||
<RvctDeviceName></RvctDeviceName>
|
||||
|
|
|
@ -75,6 +75,7 @@ typedef void (* sensorReadFuncPtr)(int16_t *data); // sensor read and a
|
|||
typedef void (* baroCalculateFuncPtr)(int32_t *pressure, int32_t *temperature); // baro calculation (filled params are pressure and temperature)
|
||||
typedef void (* uartReceiveCallbackPtr)(uint16_t data); // used by uart2 driver to return frames to app
|
||||
typedef uint16_t (* rcReadRawDataPtr)(uint8_t chan); // used by receiver driver to return channel data
|
||||
typedef void (* pidControllerFuncPtr)(void); // pid controller function prototype
|
||||
|
||||
typedef struct sensor_t
|
||||
{
|
||||
|
|
|
@ -133,6 +133,7 @@ const clivalue_t valueTable[] = {
|
|||
{ "gyro_cmpf_factor", VAR_UINT16, &mcfg.gyro_cmpf_factor, 100, 1000 },
|
||||
{ "gyro_cmpfm_factor", VAR_UINT16, &mcfg.gyro_cmpfm_factor, 100, 1000 },
|
||||
{ "gps_type", VAR_UINT8, &mcfg.gps_type, 0, 3 },
|
||||
{ "pid_controller", VAR_UINT8, &cfg.pidController, 0, 1 },
|
||||
{ "deadband", VAR_UINT8, &cfg.deadband, 0, 32 },
|
||||
{ "yawdeadband", VAR_UINT8, &cfg.yawdeadband, 0, 100 },
|
||||
{ "alt_hold_throttle_neutral", VAR_UINT8, &cfg.alt_hold_throttle_neutral, 1, 250 },
|
||||
|
@ -1013,7 +1014,7 @@ void cliProcess(void)
|
|||
else
|
||||
uartPrint("ERR: Unknown command, try 'help'");
|
||||
|
||||
*cliBuffer = '\0';
|
||||
memset(cliBuffer, 0, sizeof(cliBuffer));
|
||||
bufferIndex = 0;
|
||||
|
||||
// 'exit' will reset this flag, so we don't need to print prompt again
|
||||
|
|
|
@ -13,7 +13,7 @@ master_t mcfg; // master config struct with data independent from profiles
|
|||
config_t cfg; // profile config struct
|
||||
const char rcChannelLetters[] = "AERT1234";
|
||||
|
||||
static uint8_t EEPROM_CONF_VERSION = 47;
|
||||
static uint8_t EEPROM_CONF_VERSION = 48;
|
||||
static uint32_t enabledSensors = 0;
|
||||
static void resetConf(void);
|
||||
|
||||
|
@ -84,6 +84,7 @@ void readEEPROM(void)
|
|||
}
|
||||
|
||||
cfg.tri_yaw_middle = constrain(cfg.tri_yaw_middle, cfg.tri_yaw_min, cfg.tri_yaw_max); //REAR
|
||||
setPIDController(cfg.pidController);
|
||||
}
|
||||
|
||||
void writeEEPROM(uint8_t b, uint8_t updateProfile)
|
||||
|
@ -202,6 +203,7 @@ static void resetConf(void)
|
|||
mcfg.serial_baudrate = 115200;
|
||||
mcfg.looptime = 3500;
|
||||
|
||||
cfg.pidController = 0;
|
||||
cfg.P8[ROLL] = 40;
|
||||
cfg.I8[ROLL] = 30;
|
||||
cfg.D8[ROLL] = 23;
|
||||
|
|
209
src/mw.c
209
src/mw.c
|
@ -1,7 +1,7 @@
|
|||
#include "board.h"
|
||||
#include "mw.h"
|
||||
|
||||
// October 2012 V2.1-dev
|
||||
// June 2013 V2.2-dev
|
||||
|
||||
flags_t f;
|
||||
int16_t debug[4];
|
||||
|
@ -24,6 +24,10 @@ int16_t lookupThrottleRC[11]; // lookup table for expo & mid THROTTLE
|
|||
uint16_t rssi; // range: [0;1023]
|
||||
rcReadRawDataPtr rcReadRawFunc = NULL; // receive data from default (pwm/ppm) or additional (spek/sbus/?? receiver drivers)
|
||||
|
||||
static void pidMultiWii(void);
|
||||
static void pidRewrite(void);
|
||||
pidControllerFuncPtr pid_controller = pidMultiWii; // which pid controller are we using, defaultMultiWii
|
||||
|
||||
uint8_t dynP8[3], dynI8[3], dynD8[3];
|
||||
uint8_t rcOptions[CHECKBOXITEMS];
|
||||
|
||||
|
@ -132,6 +136,7 @@ void annexCode(void)
|
|||
prop1 = 100 - (uint16_t) cfg.yawRate * tmp / 500;
|
||||
}
|
||||
dynP8[axis] = (uint16_t) cfg.P8[axis] * prop1 / 100;
|
||||
dynI8[axis] = (uint16_t) cfg.I8[axis] * prop1 / 100;
|
||||
dynD8[axis] = (uint16_t) cfg.D8[axis] * prop1 / 100;
|
||||
if (rcData[axis] < mcfg.midrc)
|
||||
rcCommand[axis] = -rcCommand[axis];
|
||||
|
@ -273,25 +278,160 @@ static void mwVario(void)
|
|||
|
||||
}
|
||||
|
||||
static int32_t errorGyroI[3] = { 0, 0, 0 };
|
||||
static int32_t errorAngleI[2] = { 0, 0 };
|
||||
|
||||
static void pidMultiWii(void)
|
||||
{
|
||||
int axis, prop;
|
||||
int16_t error, errorAngle;
|
||||
int16_t PTerm, ITerm, PTermACC, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm;
|
||||
static int16_t lastGyro[3] = { 0, 0, 0 };
|
||||
static int16_t delta1[3], delta2[3];
|
||||
int16_t deltaSum;
|
||||
int16_t delta;
|
||||
|
||||
// **** PITCH & ROLL & YAW PID ****
|
||||
prop = max(abs(rcCommand[PITCH]), abs(rcCommand[ROLL])); // range [0;500]
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
if ((f.ANGLE_MODE || f.HORIZON_MODE) && axis < 2) { // MODE relying on ACC
|
||||
// 50 degrees max inclination
|
||||
errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -500, +500) - angle[axis] + cfg.angleTrim[axis];
|
||||
PTermACC = (int32_t)errorAngle * cfg.P8[PIDLEVEL] / 100; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result
|
||||
PTermACC = constrain(PTermACC, -cfg.D8[PIDLEVEL] * 5, +cfg.D8[PIDLEVEL] * 5);
|
||||
|
||||
errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp
|
||||
ITermACC = ((int32_t)errorAngleI[axis] * cfg.I8[PIDLEVEL]) >> 12;
|
||||
}
|
||||
if (!f.ANGLE_MODE || f.HORIZON_MODE || axis == 2) { // MODE relying on GYRO or YAW axis
|
||||
error = (int32_t)rcCommand[axis] * 10 * 8 / cfg.P8[axis];
|
||||
error -= gyroData[axis];
|
||||
|
||||
PTermGYRO = rcCommand[axis];
|
||||
|
||||
errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp
|
||||
if (abs(gyroData[axis]) > 640)
|
||||
errorGyroI[axis] = 0;
|
||||
ITermGYRO = (errorGyroI[axis] / 125 * cfg.I8[axis]) >> 6;
|
||||
}
|
||||
if (f.HORIZON_MODE && axis < 2) {
|
||||
PTerm = ((int32_t)PTermACC * (500 - prop) + (int32_t)PTermGYRO * prop) / 500;
|
||||
ITerm = ((int32_t)ITermACC * (500 - prop) + (int32_t)ITermGYRO * prop) / 500;
|
||||
} else {
|
||||
if (f.ANGLE_MODE && axis < 2) {
|
||||
PTerm = PTermACC;
|
||||
ITerm = ITermACC;
|
||||
} else {
|
||||
PTerm = PTermGYRO;
|
||||
ITerm = ITermGYRO;
|
||||
}
|
||||
}
|
||||
|
||||
PTerm -= (int32_t)gyroData[axis] * dynP8[axis] / 10 / 8; // 32 bits is needed for calculation
|
||||
delta = gyroData[axis] - lastGyro[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
|
||||
lastGyro[axis] = gyroData[axis];
|
||||
deltaSum = delta1[axis] + delta2[axis] + delta;
|
||||
delta2[axis] = delta1[axis];
|
||||
delta1[axis] = delta;
|
||||
DTerm = ((int32_t)deltaSum * dynD8[axis]) >> 5; // 32 bits is needed for calculation
|
||||
axisPID[axis] = PTerm + ITerm - DTerm;
|
||||
}
|
||||
}
|
||||
|
||||
#define GYRO_I_MAX 256
|
||||
|
||||
static void pidRewrite(void)
|
||||
{
|
||||
int16_t errorAngle;
|
||||
int axis;
|
||||
int16_t delta, deltaSum;
|
||||
static int16_t delta1[3], delta2[3];
|
||||
int16_t PTerm, ITerm, DTerm;
|
||||
static int16_t lastError[3] = { 0, 0, 0 };
|
||||
int16_t AngleRateTmp, RateError;
|
||||
|
||||
// ----------PID controller----------
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
// -----Get the desired angle rate depending on flight mode
|
||||
if ((f.ANGLE_MODE || f.HORIZON_MODE) && axis < 2 ) { // MODE relying on ACC
|
||||
// calculate error and limit the angle to 50 degrees max inclination
|
||||
errorAngle = constrain((rcCommand[axis] << 1) + GPS_angle[axis], -500, +500) - angle[axis] + cfg.angleTrim[axis]; // 16 bits is ok here
|
||||
}
|
||||
if (axis == 2) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand)
|
||||
AngleRateTmp = (((int32_t) (cfg.yawRate + 27) * rcCommand[2]) >> 5);
|
||||
} else {
|
||||
if (!f.ANGLE_MODE) { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID
|
||||
AngleRateTmp = ((int32_t) (cfg.rollPitchRate + 27) * rcCommand[axis]) >> 4;
|
||||
if (f.HORIZON_MODE) {
|
||||
// mix up angle error to desired AngleRateTmp to add a little auto-level feel
|
||||
AngleRateTmp += ((int32_t) errorAngle * cfg.I8[PIDLEVEL]) >> 8;
|
||||
}
|
||||
} else { // it's the ANGLE mode - control is angle based, so control loop is needed
|
||||
AngleRateTmp = ((int32_t) errorAngle * cfg.P8[PIDLEVEL]) >> 4;
|
||||
}
|
||||
}
|
||||
|
||||
// --------low-level gyro-based PID. ----------
|
||||
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
|
||||
// -----calculate scaled error.AngleRates
|
||||
// multiplication of rcCommand corresponds to changing the sticks scaling here
|
||||
RateError = AngleRateTmp - gyroData[axis];
|
||||
|
||||
// -----calculate P component
|
||||
PTerm = ((int32_t)RateError * cfg.P8[axis]) >> 7;
|
||||
// -----calculate I component
|
||||
// there should be no division before accumulating the error to integrator, because the precision would be reduced.
|
||||
// Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
|
||||
// Time correction (to avoid different I scaling for different builds based on average cycle time)
|
||||
// is normalized to cycle time = 2048.
|
||||
errorGyroI[axis] = errorGyroI[axis] + (((int32_t)RateError * cycleTime) >> 11) * cfg.I8[axis];
|
||||
|
||||
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
|
||||
// I coefficient (I8) moved before integration to make limiting independent from PID settings
|
||||
errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t)-GYRO_I_MAX << 13, (int32_t)+GYRO_I_MAX << 13);
|
||||
ITerm = errorGyroI[axis] >> 13;
|
||||
|
||||
//-----calculate D-term
|
||||
delta = RateError - lastError[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
|
||||
lastError[axis] = RateError;
|
||||
|
||||
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
|
||||
// would be scaled by different dt each time. Division by dT fixes that.
|
||||
delta = ((int32_t) delta * ((uint16_t)0xFFFF / (cycleTime >> 4))) >> 6;
|
||||
// add moving average here to reduce noise
|
||||
deltaSum = delta1[axis] + delta2[axis] + delta;
|
||||
delta2[axis] = delta1[axis];
|
||||
delta1[axis] = delta;
|
||||
DTerm = (deltaSum * cfg.D8[axis]) >> 8;
|
||||
|
||||
// -----calculate total PID output
|
||||
axisPID[axis] = PTerm + ITerm + DTerm;
|
||||
}
|
||||
}
|
||||
|
||||
void setPIDController(int type)
|
||||
{
|
||||
switch (type) {
|
||||
case 0:
|
||||
default:
|
||||
pid_controller = pidMultiWii;
|
||||
break;
|
||||
case 1:
|
||||
pid_controller = pidRewrite;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void loop(void)
|
||||
{
|
||||
static uint8_t rcDelayCommand; // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors
|
||||
static uint8_t rcSticks; // this hold sticks position for command combos
|
||||
uint8_t stTmp = 0;
|
||||
uint8_t axis, i;
|
||||
int16_t error, errorAngle;
|
||||
int16_t PTerm, ITerm, PTermACC, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm;
|
||||
static int16_t errorGyroI[3] = { 0, 0, 0 };
|
||||
static int16_t errorAngleI[2] = { 0, 0 };
|
||||
int16_t delta;
|
||||
static int16_t lastGyro[3] = { 0, 0, 0 };
|
||||
static int16_t delta1[3], delta2[3];
|
||||
int16_t deltaSum;
|
||||
int i;
|
||||
static uint32_t rcTime = 0;
|
||||
static int16_t initialThrottleHold;
|
||||
static uint32_t loopTime;
|
||||
uint16_t auxState = 0;
|
||||
int16_t prop;
|
||||
static uint8_t GPSNavReset = 1;
|
||||
|
||||
// this will return false if spektrum is disabled. shrug.
|
||||
|
@ -703,51 +843,8 @@ void loop(void)
|
|||
}
|
||||
}
|
||||
|
||||
// **** PITCH & ROLL & YAW PID ****
|
||||
prop = max(abs(rcCommand[PITCH]), abs(rcCommand[ROLL])); // range [0;500]
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
if ((f.ANGLE_MODE || f.HORIZON_MODE) && axis < 2) { // MODE relying on ACC
|
||||
// 50 degrees max inclination
|
||||
errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -500, +500) - angle[axis] + cfg.angleTrim[axis];
|
||||
PTermACC = (int32_t)errorAngle * cfg.P8[PIDLEVEL] / 100; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result
|
||||
PTermACC = constrain(PTermACC, -cfg.D8[PIDLEVEL] * 5, +cfg.D8[PIDLEVEL] * 5);
|
||||
|
||||
errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp
|
||||
ITermACC = ((int32_t)errorAngleI[axis] * cfg.I8[PIDLEVEL]) >> 12;
|
||||
}
|
||||
if (!f.ANGLE_MODE || f.HORIZON_MODE || axis == 2) { // MODE relying on GYRO or YAW axis
|
||||
error = (int32_t)rcCommand[axis] * 10 * 8 / cfg.P8[axis];
|
||||
error -= gyroData[axis];
|
||||
|
||||
PTermGYRO = rcCommand[axis];
|
||||
|
||||
errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp
|
||||
if (abs(gyroData[axis]) > 640)
|
||||
errorGyroI[axis] = 0;
|
||||
ITermGYRO = (errorGyroI[axis] / 125 * cfg.I8[axis]) >> 6;
|
||||
}
|
||||
if (f.HORIZON_MODE && axis < 2) {
|
||||
PTerm = ((int32_t)PTermACC * (500 - prop) + (int32_t)PTermGYRO * prop) / 500;
|
||||
ITerm = ((int32_t)ITermACC * (500 - prop) + (int32_t)ITermGYRO * prop) / 500;
|
||||
} else {
|
||||
if (f.ANGLE_MODE && axis < 2) {
|
||||
PTerm = PTermACC;
|
||||
ITerm = ITermACC;
|
||||
} else {
|
||||
PTerm = PTermGYRO;
|
||||
ITerm = ITermGYRO;
|
||||
}
|
||||
}
|
||||
|
||||
PTerm -= (int32_t)gyroData[axis] * dynP8[axis] / 10 / 8; // 32 bits is needed for calculation
|
||||
delta = gyroData[axis] - lastGyro[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
|
||||
lastGyro[axis] = gyroData[axis];
|
||||
deltaSum = delta1[axis] + delta2[axis] + delta;
|
||||
delta2[axis] = delta1[axis];
|
||||
delta1[axis] = delta;
|
||||
DTerm = ((int32_t)deltaSum * dynD8[axis]) >> 5; // 32 bits is needed for calculation
|
||||
axisPID[axis] = PTerm + ITerm - DTerm;
|
||||
}
|
||||
// PID - note this is function pointer set by setPIDController()
|
||||
pid_controller();
|
||||
|
||||
mixTable();
|
||||
writeServos();
|
||||
|
|
2
src/mw.h
2
src/mw.h
|
@ -145,6 +145,7 @@ enum {
|
|||
};
|
||||
|
||||
typedef struct config_t {
|
||||
uint8_t pidController; // 0 = multiwii original, 1 = rewrite from http://www.multiwii.com/forum/viewtopic.php?f=8&t=3671
|
||||
uint8_t P8[PIDITEMS];
|
||||
uint8_t I8[PIDITEMS];
|
||||
uint8_t D8[PIDITEMS];
|
||||
|
@ -371,6 +372,7 @@ extern sensor_t gyro;
|
|||
extern baro_t baro;
|
||||
|
||||
// main
|
||||
void setPIDController(int type);
|
||||
void loop(void);
|
||||
|
||||
// IMU
|
||||
|
|
Loading…
Reference in New Issue