custom-board-bundle-sample-.../firmware/controllers/engine_cycle/rpm_calculator.cpp

380 lines
12 KiB
C++
Raw Normal View History

2015-07-10 06:01:56 -07:00
/**
* @file rpm_calculator.cpp
* @brief RPM calculator
*
* Here we listen to position sensor events in order to figure our if engine is currently running or not.
* Actual getRpm() is calculated once per crankshaft revolution, based on the amount of time passed
* since the start of previous shaft revolution.
*
* We also have 'instant RPM' logic separate from this 'cycle RPM' logic. Open question is why do we not use
* instant RPM instead of cycle RPM more often.
*
2015-07-10 06:01:56 -07:00
* @date Jan 1, 2013
2020-01-07 21:02:40 -08:00
* @author Andrey Belomutskiy, (c) 2012-2020
2015-07-10 06:01:56 -07:00
*/
2019-11-19 22:42:03 -08:00
#include "globalaccess.h"
2019-07-05 17:03:32 -07:00
#include "os_access.h"
2019-01-20 21:10:09 -08:00
#include "engine.h"
2019-01-27 21:44:30 -08:00
#include "rpm_calculator.h"
2015-07-10 06:01:56 -07:00
#include "trigger_central.h"
#include "engine_configuration.h"
#include "engine_math.h"
2019-10-14 23:34:12 -07:00
#include "perf_trace.h"
2015-07-10 06:01:56 -07:00
#if EFI_PROD_CODE
2019-07-06 17:15:49 -07:00
#include "os_util.h"
#endif /* EFI_PROD_CODE */
2015-07-10 06:01:56 -07:00
2019-04-12 19:07:03 -07:00
#if EFI_SENSOR_CHART
2015-09-12 16:01:20 -07:00
#include "sensor_chart.h"
2015-07-10 06:01:56 -07:00
#endif
2015-07-10 06:01:56 -07:00
2015-07-15 18:01:45 -07:00
#if EFI_ENGINE_SNIFFER
#include "engine_sniffer.h"
2015-07-10 06:01:56 -07:00
extern WaveChart waveChart;
2015-07-15 18:01:45 -07:00
#endif /* EFI_ENGINE_SNIFFER */
2015-07-10 06:01:56 -07:00
2018-03-03 05:55:19 -08:00
// See RpmCalculator::checkIfSpinning()
#ifndef NO_RPM_EVENTS_TIMEOUT_SECS
#define NO_RPM_EVENTS_TIMEOUT_SECS 2
#endif /* NO_RPM_EVENTS_TIMEOUT_SECS */
float RpmCalculator::getRpmAcceleration() const {
2019-01-31 14:55:23 -08:00
return 1.0 * previousRpmValue / rpmValue;
}
bool RpmCalculator::isStopped(DECLARE_ENGINE_PARAMETER_SIGNATURE) const {
// Spinning-up with zero RPM means that the engine is not ready yet, and is treated as 'stopped'.
return state == STOPPED || (state == SPINNING_UP && rpmValue == 0);
}
bool RpmCalculator::isCranking(DECLARE_ENGINE_PARAMETER_SIGNATURE) const {
// Spinning-up with non-zero RPM is suitable for all engine math, as good as cranking
return state == CRANKING || (state == SPINNING_UP && rpmValue > 0);
}
bool RpmCalculator::isSpinningUp(DECLARE_ENGINE_PARAMETER_SIGNATURE) const {
return state == SPINNING_UP;
}
uint32_t RpmCalculator::getRevolutionCounterSinceStart(void) const {
2019-01-31 14:55:23 -08:00
return revolutionCounterSinceStart;
}
/**
* @return -1 in case of isNoisySignal(), current RPM otherwise
* See NOISY_RPM
2019-01-31 14:55:23 -08:00
*/
// todo: migrate to float return result or add a float version? this would have with calculations
int RpmCalculator::getRpm(DECLARE_ENGINE_PARAMETER_SIGNATURE) const {
#if !EFI_PROD_CODE
if (mockRpm != MOCK_UNDEFINED) {
return mockRpm;
}
#endif /* EFI_PROD_CODE */
return rpmValue;
}
2019-04-12 19:07:03 -07:00
#if EFI_SHAFT_POSITION_INPUT
2019-01-31 14:55:23 -08:00
2015-07-10 06:01:56 -07:00
EXTERN_ENGINE
;
2016-06-01 17:01:36 -07:00
extern bool hasFirmwareErrorFlag;
2015-07-10 06:01:56 -07:00
static Logging * logger;
RpmCalculator::RpmCalculator() {
#if !EFI_PROD_CODE
mockRpm = MOCK_UNDEFINED;
2017-07-06 18:21:45 -07:00
#endif /* EFI_PROD_CODE */
2018-03-03 06:11:49 -08:00
// todo: reuse assignRpmValue() method which needs PASS_ENGINE_PARAMETER_SUFFIX
2019-01-13 20:20:19 -08:00
// which we cannot provide inside this parameter-less constructor. need a solution for this minor mess
2015-07-10 06:01:56 -07:00
// we need this initial to have not_running at first invocation
lastRpmEventTimeNt = (efitick_t) -10 * NT_PER_SECOND;
2015-07-10 06:01:56 -07:00
}
/**
* @return true if there was a full shaft revolution within the last second
*/
2019-01-24 20:44:29 -08:00
bool RpmCalculator::isRunning(DECLARE_ENGINE_PARAMETER_SIGNATURE) const {
2017-07-07 05:10:06 -07:00
return state == RUNNING;
2017-07-06 17:10:34 -07:00
}
2019-01-05 20:33:04 -08:00
/**
* @return true if engine is spinning (cranking or running)
*/
2019-01-24 20:44:29 -08:00
bool RpmCalculator::checkIfSpinning(efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) const {
2019-01-05 20:33:04 -08:00
if (ENGINE(needToStopEngine(nowNt))) {
return false;
2015-07-10 06:01:56 -07:00
}
2017-07-06 17:10:34 -07:00
2015-07-10 06:01:56 -07:00
/**
* note that the result of this subtraction could be negative, that would happen if
* we have a trigger event between the time we've invoked 'getTimeNow' and here
*/
bool noRpmEventsForTooLong = nowNt - lastRpmEventTimeNt >= NT_PER_SECOND * NO_RPM_EVENTS_TIMEOUT_SECS; // Anything below 60 rpm is not running
/**
* Also check if there were no trigger events
*/
bool noTriggerEventsForTooLong = nowNt - engine->triggerCentral.previousShaftEventTimeNt >= NT_PER_SECOND;
if (noRpmEventsForTooLong || noTriggerEventsForTooLong) {
2017-07-06 17:10:34 -07:00
return false;
2015-07-10 06:01:56 -07:00
}
2017-07-06 17:10:34 -07:00
return true;
2017-07-06 16:33:25 -07:00
}
2016-03-15 19:03:43 -07:00
void RpmCalculator::assignRpmValue(float floatRpmValue DECLARE_ENGINE_PARAMETER_SUFFIX) {
2015-07-10 06:01:56 -07:00
previousRpmValue = rpmValue;
// we still persist integer RPM! todo: figure out the next steps
rpmValue = floatRpmValue;
2015-07-10 06:01:56 -07:00
if (rpmValue <= 0) {
oneDegreeUs = NAN;
} else {
// here it's really important to have more precise float RPM value, see #796
oneDegreeUs = getOneDegreeTimeUs(floatRpmValue);
if (previousRpmValue == 0) {
/**
* this would make sure that we have good numbers for first cranking revolution
* #275 cranking could be improved
*/
ENGINE(periodicFastCallback(PASS_ENGINE_PARAMETER_SIGNATURE));
}
2015-07-10 06:01:56 -07:00
}
}
void RpmCalculator::setRpmValue(float value DECLARE_ENGINE_PARAMETER_SUFFIX) {
2018-03-03 05:55:19 -08:00
assignRpmValue(value PASS_ENGINE_PARAMETER_SUFFIX);
spinning_state_e oldState = state;
// Change state
2017-07-07 05:10:06 -07:00
if (rpmValue == 0) {
state = STOPPED;
2017-07-08 10:42:14 -07:00
} else if (rpmValue >= CONFIG(cranking.rpm)) {
2017-07-07 05:10:06 -07:00
state = RUNNING;
} else if (state == STOPPED || state == SPINNING_UP) {
2017-07-08 12:46:34 -07:00
/**
* We are here if RPM is above zero but we have not seen running RPM yet.
* This gives us cranking hysteresis - a drop of RPM during running is still running, not cranking.
*/
2017-07-08 10:42:14 -07:00
state = CRANKING;
2017-07-07 05:10:06 -07:00
}
2019-04-12 19:07:03 -07:00
#if EFI_ENGINE_CONTROL
// This presumably fixes injection mode change for cranking-to-running transition.
// 'isSimultanious' flag should be updated for events if injection modes differ for cranking and running.
if (state != oldState) {
engine->injectionEvents.addFuelEvents(PASS_ENGINE_PARAMETER_SIGNATURE);
}
#endif
}
2019-01-24 20:44:29 -08:00
spinning_state_e RpmCalculator::getState() const {
return state;
2016-03-15 19:03:43 -07:00
}
2015-07-10 06:01:56 -07:00
void RpmCalculator::onNewEngineCycle() {
revolutionCounterSinceBoot++;
revolutionCounterSinceStart++;
}
uint32_t RpmCalculator::getRevolutionCounterM(void) const {
2015-07-10 06:01:56 -07:00
return revolutionCounterSinceBoot;
}
2017-07-06 16:33:25 -07:00
void RpmCalculator::setStopped(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
revolutionCounterSinceStart = 0;
if (rpmValue != 0) {
2018-03-03 05:55:19 -08:00
assignRpmValue(0 PASS_ENGINE_PARAMETER_SUFFIX);
2017-07-06 17:10:34 -07:00
scheduleMsg(logger, "engine stopped");
2017-07-06 16:33:25 -07:00
}
2017-07-07 04:20:04 -07:00
state = STOPPED;
2017-07-06 16:33:25 -07:00
}
void RpmCalculator::setStopSpinning(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
isSpinning = false;
setStopped(PASS_ENGINE_PARAMETER_SIGNATURE);
}
void RpmCalculator::setSpinningUp(efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (!CONFIG(isFasterEngineSpinUpEnabled))
return;
// Only a completely stopped and non-spinning engine can enter the spinning-up state.
if (isStopped(PASS_ENGINE_PARAMETER_SIGNATURE) && !isSpinning) {
state = SPINNING_UP;
engine->triggerCentral.triggerState.spinningEventIndex = 0;
isSpinning = true;
}
// update variables needed by early instant RPM calc.
if (isSpinningUp(PASS_ENGINE_PARAMETER_SIGNATURE)) {
engine->triggerCentral.triggerState.setLastEventTimeForInstantRpm(nowNt PASS_ENGINE_PARAMETER_SUFFIX);
}
/**
* Update ignition pin indices if needed. Here we potentially switch to wasted spark temporarily.
*/
prepareIgnitionPinIndices(getCurrentIgnitionMode(PASS_ENGINE_PARAMETER_SIGNATURE) PASS_ENGINE_PARAMETER_SUFFIX);
}
2015-07-10 06:01:56 -07:00
/**
* @brief Shaft position callback used by RPM calculation logic.
*
* This callback should always be the first of trigger callbacks because other callbacks depend of values
* updated here.
* This callback is invoked on interrupt thread.
*/
void rpmShaftPositionCallback(trigger_event_e ckpSignalType,
uint32_t index, efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
efiAssertVoid(CUSTOM_ERR_6632, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "lowstckRCL");
2015-07-10 06:01:56 -07:00
RpmCalculator *rpmState = &engine->rpmCalculator;
2017-05-25 19:49:40 -07:00
if (index == 0) {
2019-05-07 16:32:08 -07:00
ENGINE(m.beforeRpmCb) = getTimeNowLowerNt();
2015-07-10 06:01:56 -07:00
2019-01-24 20:44:29 -08:00
bool hadRpmRecently = rpmState->checkIfSpinning(nowNt PASS_ENGINE_PARAMETER_SUFFIX);
2015-07-10 06:01:56 -07:00
2017-05-25 19:49:40 -07:00
if (hadRpmRecently) {
efitick_t diffNt = nowNt - rpmState->lastRpmEventTimeNt;
2015-07-10 06:01:56 -07:00
/**
* Four stroke cycle is two crankshaft revolutions
*
* We always do '* 2' because the event signal is already adjusted to 'per engine cycle'
* and each revolution of crankshaft consists of two engine cycles revolutions
*
*/
2017-05-25 19:49:40 -07:00
if (diffNt == 0) {
rpmState->setRpmValue(NOISY_RPM PASS_ENGINE_PARAMETER_SUFFIX);
} else {
int mult = (int)getEngineCycle(engine->getOperationMode(PASS_ENGINE_PARAMETER_SIGNATURE)) / 360;
float rpm = 60.0 * NT_PER_SECOND * mult / diffNt;
2017-05-25 19:49:40 -07:00
rpmState->setRpmValue(rpm > UNREALISTIC_RPM ? NOISY_RPM : rpm PASS_ENGINE_PARAMETER_SUFFIX);
}
2015-07-10 06:01:56 -07:00
}
2017-05-25 19:49:40 -07:00
rpmState->onNewEngineCycle();
rpmState->lastRpmEventTimeNt = nowNt;
2019-05-07 16:32:08 -07:00
ENGINE(m.rpmCbTime) = getTimeNowLowerNt() - ENGINE(m.beforeRpmCb);
2015-07-10 06:01:56 -07:00
}
2017-05-25 19:49:40 -07:00
2019-04-12 19:07:03 -07:00
#if EFI_SENSOR_CHART
2016-05-28 21:01:59 -07:00
// this 'index==0' case is here so that it happens after cycle callback so
// it goes into sniffer report into the first position
2016-01-30 19:03:36 -08:00
if (ENGINE(sensorChartMode) == SC_TRIGGER) {
2017-05-25 19:49:40 -07:00
angle_t crankAngle = getCrankshaftAngleNt(nowNt PASS_ENGINE_PARAMETER_SUFFIX);
int signal = 1000 * ckpSignalType + index;
2015-07-26 21:01:35 -07:00
scAddData(crankAngle, signal);
}
2019-12-04 04:33:56 -08:00
#endif /* EFI_SENSOR_CHART */
2017-05-25 19:49:40 -07:00
if (rpmState->isSpinningUp(PASS_ENGINE_PARAMETER_SIGNATURE)) {
// we are here only once trigger is synchronized for the first time
// while transitioning from 'spinning' to 'running'
// Replace 'normal' RPM with instant RPM for the initial spin-up period
engine->triggerCentral.triggerState.movePreSynchTimestamps(PASS_ENGINE_PARAMETER_SIGNATURE);
int prevIndex;
2019-09-09 16:39:13 -07:00
int instantRpm = engine->triggerCentral.triggerState.calculateInstantRpm(&prevIndex, nowNt PASS_ENGINE_PARAMETER_SUFFIX);
// validate instant RPM - we shouldn't skip the cranking state
2019-09-09 16:39:13 -07:00
instantRpm = minI(instantRpm, CONFIG(cranking.rpm) - 1);
rpmState->assignRpmValue(instantRpm PASS_ENGINE_PARAMETER_SUFFIX);
#if 0
2019-09-09 16:39:13 -07:00
scheduleMsg(logger, "** RPM: idx=%d sig=%d iRPM=%d", index, ckpSignalType, instantRpm);
#endif
}
2015-07-10 06:01:56 -07:00
}
static scheduling_s tdcScheduler[2];
2016-08-09 21:04:24 -07:00
static char rpmBuffer[_MAX_FILLER];
2015-07-10 06:01:56 -07:00
/**
2019-05-02 14:52:48 -07:00
* This callback has nothing to do with actual engine control, it just sends a Top Dead Center mark to the rusEfi console
2015-07-10 06:01:56 -07:00
* digital sniffer.
*/
2019-11-19 22:42:03 -08:00
static void onTdcCallback(Engine *engine) {
2019-12-23 18:58:06 -08:00
#if EFI_UNIT_TEST
if (!engine->needTdcCallback) {
return;
}
2019-12-23 18:58:06 -08:00
#endif /* EFI_UNIT_TEST */
2019-11-19 22:42:03 -08:00
EXPAND_Engine;
2019-01-21 18:48:58 -08:00
itoa10(rpmBuffer, GET_RPM());
#if EFI_ENGINE_SNIFFER
waveChart.startDataCollection();
#endif
2018-09-10 19:29:43 -07:00
addEngineSnifferEvent(TOP_DEAD_CENTER_MESSAGE, (char* ) rpmBuffer);
2015-07-10 06:01:56 -07:00
}
/**
* This trigger callback schedules the actual physical TDC callback in relation to trigger synchronization point.
*/
static void tdcMarkCallback(trigger_event_e ckpSignalType,
uint32_t index0, efitick_t edgeTimestamp DECLARE_ENGINE_PARAMETER_SUFFIX) {
2015-07-10 06:01:56 -07:00
(void) ckpSignalType;
bool isTriggerSynchronizationPoint = index0 == 0;
2016-01-30 19:03:36 -08:00
if (isTriggerSynchronizationPoint && ENGINE(isEngineChartEnabled)) {
2019-12-23 17:19:13 -08:00
// two instances of scheduling_s are needed to properly handle event overlap
int revIndex2 = getRevolutionCounter() % 2;
2019-01-21 18:48:58 -08:00
int rpm = GET_RPM();
// todo: use tooth event-based scheduling, not just time-based scheduling
2015-07-10 06:01:56 -07:00
if (isValidRpm(rpm)) {
scheduleByAngle(&tdcScheduler[revIndex2], edgeTimestamp, tdcPosition(),
{ onTdcCallback, engine } PASS_ENGINE_PARAMETER_SUFFIX);
2015-07-10 06:01:56 -07:00
}
}
}
2019-11-19 22:42:03 -08:00
2015-07-10 06:01:56 -07:00
/**
* @return Current crankshaft angle, 0 to 720 for four-stroke
*/
float getCrankshaftAngleNt(efitick_t timeNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
efitick_t timeSinceZeroAngleNt = timeNt
2015-07-10 06:01:56 -07:00
- engine->rpmCalculator.lastRpmEventTimeNt;
/**
* even if we use 'getOneDegreeTimeUs' macros here, it looks like the
* compiler is not smart enough to figure out that "A / ( B / C)" could be optimized into
* "A * C / B" in order to replace a slower division with a faster multiplication.
*/
2019-01-21 18:48:58 -08:00
int rpm = GET_RPM();
2015-07-10 06:01:56 -07:00
return rpm == 0 ? NAN : timeSinceZeroAngleNt / getOneDegreeTimeNt(rpm);
}
2019-01-20 21:10:09 -08:00
void initRpmCalculator(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) {
2015-07-10 06:01:56 -07:00
logger = sharedLogger;
2016-06-01 17:01:36 -07:00
if (hasFirmwareError()) {
return;
}
2015-07-10 06:01:56 -07:00
addTriggerEventListener(tdcMarkCallback, "chart TDC mark", engine);
addTriggerEventListener(rpmShaftPositionCallback, "rpm reporter", engine);
}
/**
* Schedules a callback 'angle' degree of crankshaft from now.
* The callback would be executed once after the duration of time which
* it takes the crankshaft to rotate to the specified angle.
*/
void scheduleByAngle(scheduling_s *timer, efitick_t edgeTimestamp, angle_t angle,
action_s action DECLARE_ENGINE_PARAMETER_SUFFIX) {
float delayUs = ENGINE(rpmCalculator.oneDegreeUs) * angle;
efitime_t delayNt = US2NT(delayUs);
efitime_t delayedTime = edgeTimestamp + delayNt;
ENGINE(executor.scheduleByTimestampNt(timer, delayedTime, action));
2015-07-10 06:01:56 -07:00
}
#else
RpmCalculator::RpmCalculator() {
}
#endif /* EFI_SHAFT_POSITION_INPUT */