rusefi-1/firmware/hw_layer/adc/adc_inputs.cpp

669 lines
22 KiB
C++
Raw Normal View History

/**
* @file adc_inputs.cpp
* @brief Low level ADC code
*
2019-05-15 01:16:41 -07:00
* rusEfi uses two ADC devices on the same 16 pins at the moment. Two ADC devices are used in orde to distinguish between
* fast and slow devices. The idea is that but only having few channels in 'fast' mode we can sample those faster?
*
* At the moment rusEfi does not allow to have more than 16 ADC channels combined. At the moment there is no flexibility to use
2019-05-28 15:19:51 -07:00
* any ADC pins, only the hardcoded choice of 16 pins.
2019-05-15 01:16:41 -07:00
*
* Slow ADC group is used for IAT, CLT, AFR, VBATT etc - this one is currently sampled at 500Hz
*
* Fast ADC group is used for MAP, MAF HIP - this one is currently sampled at 10KHz
2018-04-08 08:38:14 -07:00
* We need frequent MAP for map_averaging.cpp
*
2018-12-23 20:29:19 -08:00
* 10KHz equals one measurement every 3.6 degrees at 6000 RPM
*
* @date Jan 14, 2013
2020-01-13 18:57:43 -08:00
* @author Andrey Belomutskiy, (c) 2012-2020
*/
2018-09-16 19:26:57 -07:00
#include "global.h"
2019-04-12 17:52:51 -07:00
#if HAL_USE_ADC
#include "os_access.h"
#include "engine.h"
#include "adc_inputs.h"
#include "adc_subscription.h"
#include "AdcConfiguration.h"
#include "mpu_util.h"
#include "periodic_thread_controller.h"
#include "pin_repository.h"
#include "engine_math.h"
#include "engine_controller.h"
#include "maf.h"
2019-10-11 17:43:21 -07:00
#include "perf_trace.h"
// on F7 this must be aligned on a 32-byte boundary, and be a multiple of 32 bytes long.
// When we invalidate the cache line(s) for ADC samples, we don't want to nuke any
// adjacent data.
// F4 does not care
static __ALIGNED(32) adcsample_t slowAdcSampleBuf[ADC_BUF_DEPTH_SLOW * ADC_MAX_CHANNELS_COUNT];
static __ALIGNED(32) adcsample_t fastAdcSampleBuf[ADC_BUF_DEPTH_FAST * ADC_MAX_CHANNELS_COUNT];
static_assert(sizeof(slowAdcSampleBuf) % 32 == 0, "Slow ADC sample buffer size must be a multiple of 32 bytes");
static_assert(sizeof(fastAdcSampleBuf) % 32 == 0, "Fast ADC sample buffer size must be a multiple of 32 bytes");
static adc_channel_mode_e adcHwChannelEnabled[HW_MAX_ADC_INDEX];
EXTERN_ENGINE;
// Board voltage, with divider coefficient accounted for
float getVoltageDivided(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) {
return getVoltage(msg, hwChannel PASS_ENGINE_PARAMETER_SUFFIX) * engineConfiguration->analogInputDividerCoefficient;
}
// voltage in MCU universe, from zero to VDD
float getVoltage(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) {
return adcToVolts(getAdcValue(msg, hwChannel));
}
AdcDevice::AdcDevice(ADCConversionGroup* hwConfig, adcsample_t *buf, size_t buf_len) {
this->hwConfig = hwConfig;
this->samples = buf;
this->buf_len = buf_len;
hwConfig->sqr1 = 0;
hwConfig->sqr2 = 0;
hwConfig->sqr3 = 0;
#if ADC_MAX_CHANNELS_COUNT > 16
hwConfig->sqr4 = 0;
hwConfig->sqr5 = 0;
#endif /* ADC_MAX_CHANNELS_COUNT */
memset(hardwareIndexByIndernalAdcIndex, EFI_ADC_NONE, sizeof(hardwareIndexByIndernalAdcIndex));
2020-11-22 12:31:33 -08:00
memset(internalAdcIndexByHardwareIndex, 0xFFFFFFFF, sizeof(internalAdcIndexByHardwareIndex));
}
#if !defined(GPT_FREQ_FAST) || !defined(GPT_PERIOD_FAST)
/**
* 8000 RPM is 133Hz
* If we want to sample MAP once per 5 degrees we need 133Hz * (360 / 5) = 9576Hz of fast ADC
*/
// todo: migrate to continues ADC mode? probably not - we cannot afford the callback in
// todo: continues mode. todo: look into our options
#define GPT_FREQ_FAST 100000 /* PWM clock frequency. I wonder what does this setting mean? */
#define GPT_PERIOD_FAST 10 /* PWM period (in PWM ticks). */
#endif /* GPT_FREQ_FAST GPT_PERIOD_FAST */
// is there a reason to have this configurable at runtime?
#ifndef ADC_SLOW_DEVICE
#define ADC_SLOW_DEVICE ADCD1
#endif /* ADC_SLOW_DEVICE */
// is there a reason to have this configurable at runtime?
#ifndef ADC_FAST_DEVICE
#define ADC_FAST_DEVICE ADCD2
#endif /* ADC_FAST_DEVICE */
static volatile int slowAdcCounter = 0;
static LoggingWithStorage logger("ADC");
// todo: move this flag to Engine god object
static int adcDebugReporting = false;
EXTERN_ENGINE;
static adcsample_t getAvgAdcValue(int index, adcsample_t *samples, int bufDepth, int numChannels) {
uint32_t result = 0;
for (int i = 0; i < bufDepth; i++) {
result += samples[index];
index += numChannels;
}
// this truncation is guaranteed to not be lossy - the average can't be larger than adcsample_t
return static_cast<adcsample_t>(result / bufDepth);
}
2019-10-19 05:01:28 -07:00
// See https://github.com/rusefi/rusefi/issues/976 for discussion on these values
#define ADC_SAMPLING_SLOW ADC_SAMPLE_56
#define ADC_SAMPLING_FAST ADC_SAMPLE_28
/*
* ADC conversion group.
*/
static ADCConversionGroup adcgrpcfgSlow = {
.circular = FALSE,
.num_channels = 0,
.end_cb = nullptr,
.error_cb = nullptr,
/* HW dependent part.*/
.cr1 = 0,
.cr2 = ADC_CR2_SWSTART,
/**
* here we configure all possible channels for slow mode. Some channels would not actually
* be used hopefully that's fine to configure all possible channels.
*/
// sample times for channels 10...18
.smpr1 =
ADC_SMPR1_SMP_AN10(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN11(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN12(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN13(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN14(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN15(ADC_SAMPLING_SLOW) |
#if defined(STM32F7XX)
ADC_SMPR1_SMP_VBAT(ADC_SAMPLE_144) | /* input18 - temperature and vbat input on some STM32F7xx */
#endif
ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_144), /* input16 - temperature sensor input on STM32F4xx */
// In this field must be specified the sample times for channels 0...9
.smpr2 =
ADC_SMPR2_SMP_AN0(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN1(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN2(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN3(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN4(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN5(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN6(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN7(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN8(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN9(ADC_SAMPLING_SLOW),
.htr = 0,
.ltr = 0,
.sqr1 = 0, // Conversion group sequence 13...16 + sequence length
.sqr2 = 0, // Conversion group sequence 7...12
.sqr3 = 0, // Conversion group sequence 1...6
#if ADC_MAX_CHANNELS_COUNT > 16
.sqr4 = 0, // Conversion group sequence 19...24
.sqr5 = 0 // Conversion group sequence 25...30
#endif /* ADC_MAX_CHANNELS_COUNT */
};
AdcDevice slowAdc(&adcgrpcfgSlow, slowAdcSampleBuf, ARRAY_SIZE(slowAdcSampleBuf));
void adc_callback_fast(ADCDriver *adcp, adcsample_t *buffer, size_t n);
static ADCConversionGroup adcgrpcfgFast = {
.circular = FALSE,
.num_channels = 0,
.end_cb = adc_callback_fast,
.error_cb = nullptr,
/* HW dependent part.*/
.cr1 = 0,
.cr2 = ADC_CR2_SWSTART,
/**
* here we configure all possible channels for fast mode. Some channels would not actually
* be used hopefully that's fine to configure all possible channels.
*
*/
// sample times for channels 10...18
.smpr1 =
ADC_SMPR1_SMP_AN10(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN11(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN12(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN13(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN14(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN15(ADC_SAMPLING_FAST),
// In this field must be specified the sample times for channels 0...9
.smpr2 =
ADC_SMPR2_SMP_AN0(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN1(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN2(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN3(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN4(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN5(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN6(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN7(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN8(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN9(ADC_SAMPLING_FAST),
.htr = 0,
.ltr = 0,
.sqr1 = 0, // Conversion group sequence 13...16 + sequence length
.sqr2 = 0, // Conversion group sequence 7...12
.sqr3 = 0, // Conversion group sequence 1...6
#if ADC_MAX_CHANNELS_COUNT > 16
.sqr4 = 0, // Conversion group sequence 19...24
.sqr5 = 0 // Conversion group sequence 25...30
#endif /* ADC_MAX_CHANNELS_COUNT */
};
AdcDevice fastAdc(&adcgrpcfgFast, fastAdcSampleBuf, ARRAY_SIZE(fastAdcSampleBuf));
#if HAL_USE_GPT
static void fast_adc_callback(GPTDriver*) {
2019-04-12 17:52:51 -07:00
#if EFI_INTERNAL_ADC
/*
* Starts an asynchronous ADC conversion operation, the conversion
* will be executed in parallel to the current PWM cycle and will
* terminate before the next PWM cycle.
*/
2017-03-30 06:01:28 -07:00
chSysLockFromISR()
;
if (ADC_FAST_DEVICE.state != ADC_READY &&
ADC_FAST_DEVICE.state != ADC_COMPLETE &&
ADC_FAST_DEVICE.state != ADC_ERROR) {
fastAdc.errorsCount++;
// todo: when? why? firmwareError(OBD_PCM_Processor_Fault, "ADC fast not ready?");
2017-03-30 06:01:28 -07:00
chSysUnlockFromISR()
;
return;
}
2019-10-11 17:43:21 -07:00
adcStartConversionI(&ADC_FAST_DEVICE, &adcgrpcfgFast, fastAdc.samples, ADC_BUF_DEPTH_FAST);
2017-03-30 06:01:28 -07:00
chSysUnlockFromISR()
;
fastAdc.conversionCount++;
2017-11-27 18:49:58 -08:00
#endif /* EFI_INTERNAL_ADC */
}
#endif /* HAL_USE_GPT */
float getMCUInternalTemperature() {
2019-04-12 17:52:51 -07:00
#if defined(ADC_CHANNEL_SENSOR)
float TemperatureValue = adcToVolts(slowAdc.getAdcValueByHwChannel(EFI_ADC_TEMP_SENSOR));
TemperatureValue -= 0.760f; // Subtract the reference voltage at 25 deg C
TemperatureValue /= 0.0025f; // Divide by slope 2.5mV
TemperatureValue += 25.0; // Add the 25 deg C
if (TemperatureValue > 150.0f || TemperatureValue < -50.0f) {
firmwareError(OBD_PCM_Processor_Fault, "Invalid CPU temperature measured %f", TemperatureValue);
}
return TemperatureValue;
#else
return 0;
#endif /* ADC_CHANNEL_SENSOR */
}
int getInternalAdcValue(const char *msg, adc_channel_e hwChannel) {
if (hwChannel == EFI_ADC_NONE) {
2017-04-12 04:57:52 -07:00
warning(CUSTOM_OBD_ANALOG_INPUT_NOT_CONFIGURED, "ADC: %s input is not configured", msg);
return -1;
}
2017-11-27 18:49:58 -08:00
#if EFI_ENABLE_MOCK_ADC
if (engine->engineState.mockAdcState.hasMockAdc[hwChannel])
return engine->engineState.mockAdcState.getMockAdcValue(hwChannel);
2017-11-27 18:49:58 -08:00
#endif /* EFI_ENABLE_MOCK_ADC */
if (adcHwChannelEnabled[hwChannel] == ADC_FAST) {
int internalIndex = fastAdc.internalAdcIndexByHardwareIndex[hwChannel];
// todo if ADC_BUF_DEPTH_FAST EQ 1
// return fastAdc.samples[internalIndex];
int value = getAvgAdcValue(internalIndex, fastAdc.samples, ADC_BUF_DEPTH_FAST, fastAdc.size());
return value;
}
if (adcHwChannelEnabled[hwChannel] != ADC_SLOW) {
2020-05-23 14:13:46 -07:00
// todo: make this not happen during hardware continues integration
warning(CUSTOM_OBD_WRONG_ADC_MODE, "ADC is off [%s] index=%d", msg, hwChannel);
}
return slowAdc.getAdcValueByHwChannel(hwChannel);
}
#if HAL_USE_GPT
static GPTConfig fast_adc_config = {
GPT_FREQ_FAST,
fast_adc_callback,
0, 0
};
#endif /* HAL_USE_GPT */
adc_channel_mode_e getAdcMode(adc_channel_e hwChannel) {
if (slowAdc.isHwUsed(hwChannel)) {
return ADC_SLOW;
}
if (fastAdc.isHwUsed(hwChannel)) {
return ADC_FAST;
}
return ADC_OFF;
}
int AdcDevice::size() const {
return channelCount;
}
2020-11-22 12:31:33 -08:00
int AdcDevice::getAdcValueByHwChannel(adc_channel_e hwChannel) const {
int internalIndex = internalAdcIndexByHardwareIndex[hwChannel];
return values.adc_data[internalIndex];
}
2020-11-22 12:31:33 -08:00
int AdcDevice::getAdcValueByIndex(int internalIndex) const {
return values.adc_data[internalIndex];
}
void AdcDevice::invalidateSamplesCache() {
2019-06-23 07:34:49 -07:00
#if defined(STM32F7XX)
// The STM32F7xx has a data cache
// DMA operations DO NOT invalidate cache lines, since the ARM m7 doesn't have
// anything like a CCI that maintains coherency across multiple bus masters.
// As a result, we have to manually invalidate the D-cache any time we (the CPU)
// would like to read something that somebody else wrote (ADC via DMA, in this case)
SCB_InvalidateDCache_by_Addr(reinterpret_cast<uint32_t*>(samples), sizeof(*samples) * buf_len);
2020-03-18 08:37:53 -07:00
#endif /* STM32F7XX */
}
void AdcDevice::init(void) {
hwConfig->num_channels = size();
/* driver does this internally */
//hwConfig->sqr1 += ADC_SQR1_NUM_CH(size());
}
bool AdcDevice::isHwUsed(adc_channel_e hwChannelIndex) const {
for (size_t i = 0; i < channelCount; i++) {
if (hardwareIndexByIndernalAdcIndex[i] == hwChannelIndex) {
return true;
}
}
return false;
}
void AdcDevice::enableChannel(adc_channel_e hwChannel) {
2020-11-22 12:31:33 -08:00
if (channelCount >= efi::size(values.adc_data)) {
firmwareError(OBD_PCM_Processor_Fault, "Too many ADC channels configured");
return;
}
int logicChannel = channelCount++;
size_t channelAdcIndex = hwChannel - 1;
#if defined(STM32F7XX)
/* the temperature sensor is internally connected to ADC1_IN18 */
if (hwChannel == EFI_ADC_TEMP_SENSOR)
channelAdcIndex = 18;
#endif
internalAdcIndexByHardwareIndex[hwChannel] = logicChannel;
hardwareIndexByIndernalAdcIndex[logicChannel] = hwChannel;
if (logicChannel < 6) {
hwConfig->sqr3 |= channelAdcIndex << (5 * logicChannel);
} else if (logicChannel < 12) {
hwConfig->sqr2 |= channelAdcIndex << (5 * (logicChannel - 6));
} else if (logicChannel < 18) {
hwConfig->sqr1 |= channelAdcIndex << (5 * (logicChannel - 12));
}
#if ADC_MAX_CHANNELS_COUNT > 16
else if (logicChannel < 24) {
hwConfig->sqr4 |= channelAdcIndex << (5 * (logicChannel - 18));
}
else if (logicChannel < 30) {
hwConfig->sqr5 |= channelAdcIndex << (5 * (logicChannel - 24));
}
#endif /* ADC_MAX_CHANNELS_COUNT */
}
void AdcDevice::enableChannelAndPin(const char *msg, adc_channel_e hwChannel) {
enableChannel(hwChannel);
brain_pin_e pin = getAdcChannelBrainPin(msg, hwChannel);
efiSetPadMode(msg, pin, PAL_MODE_INPUT_ANALOG);
}
2019-03-02 15:41:25 -08:00
static void printAdcValue(int channel) {
int value = getAdcValue("print", (adc_channel_e)channel);
float volts = adcToVoltsDivided(value);
2018-01-23 09:05:14 -08:00
scheduleMsg(&logger, "adc voltage : %.2f", volts);
}
adc_channel_e AdcDevice::getAdcHardwareIndexByInternalIndex(int index) const {
return hardwareIndexByIndernalAdcIndex[index];
}
static void printFullAdcReport(Logging *logger) {
scheduleMsg(logger, "fast %d slow %d", fastAdc.conversionCount, slowAdc.conversionCount);
for (int index = 0; index < fastAdc.size(); index++) {
appendMsgPrefix(logger);
adc_channel_e hwIndex = fastAdc.getAdcHardwareIndexByInternalIndex(index);
if (hwIndex != EFI_ADC_NONE && hwIndex != EFI_ADC_ERROR) {
ioportid_t port = getAdcChannelPort("print", hwIndex);
int pin = getAdcChannelPin(hwIndex);
int adcValue = getAvgAdcValue(hwIndex, fastAdc.samples, ADC_BUF_DEPTH_FAST, fastAdc.size());
logger->appendPrintf(" F ch%d %s%d", index, portname(port), pin);
logger->appendPrintf(" ADC%d 12bit=%d", hwIndex, adcValue);
float volts = adcToVolts(adcValue);
logger->appendPrintf(" v=%.2f", volts);
appendMsgPostfix(logger);
scheduleLogging(logger);
}
}
for (int index = 0; index < slowAdc.size(); index++) {
appendMsgPrefix(logger);
adc_channel_e hwIndex = slowAdc.getAdcHardwareIndexByInternalIndex(index);
2019-11-19 15:17:03 -08:00
if (hwIndex != EFI_ADC_NONE && hwIndex != EFI_ADC_ERROR) {
ioportid_t port = getAdcChannelPort("print", hwIndex);
int pin = getAdcChannelPin(hwIndex);
int adcValue = slowAdc.getAdcValueByIndex(index);
logger->appendPrintf(" S ch%d %s%d", index, portname(port), pin);
logger->appendPrintf(" ADC%d 12bit=%d", hwIndex, adcValue);
float volts = adcToVolts(adcValue);
logger->appendPrintf(" v=%.2f", volts);
appendMsgPostfix(logger);
scheduleLogging(logger);
}
}
}
static void setAdcDebugReporting(int value) {
adcDebugReporting = value;
scheduleMsg(&logger, "adcDebug=%d", adcDebugReporting);
}
2018-01-22 14:45:10 -08:00
void waitForSlowAdc(int lastAdcCounter) {
// don't halt the firmware if there are no slow channels assigned
if (slowAdc.size() < 1)
return;
// we use slowAdcCounter instead of slowAdc.conversionCount because we need ADC_COMPLETE state
// todo: use sync.objects?
2018-01-22 14:45:10 -08:00
while (slowAdcCounter <= lastAdcCounter) {
chThdSleepMilliseconds(1);
}
}
2018-01-22 14:45:10 -08:00
int getSlowAdcCounter() {
return slowAdcCounter;
}
2019-10-11 17:43:21 -07:00
class SlowAdcController : public PeriodicController<256> {
public:
SlowAdcController()
: PeriodicController("ADC", NORMALPRIO + 5, SLOW_ADC_RATE)
{
}
2019-10-08 17:44:59 -07:00
void PeriodicTask(efitick_t nowNt) override {
{
ScopePerf perf(PE::AdcConversionSlow);
2019-10-08 17:44:59 -07:00
slowAdc.conversionCount++;
msg_t result = adcConvert(&ADC_SLOW_DEVICE, &adcgrpcfgSlow, slowAdc.samples, ADC_BUF_DEPTH_SLOW);
// If something went wrong - try again later
if (result == MSG_RESET || result == MSG_TIMEOUT) {
slowAdc.errorsCount++;
return;
}
#ifdef USE_ADC3_VBATT_HACK
void proteusAdcHack();
proteusAdcHack();
#endif
}
{
ScopePerf perf(PE::AdcProcessSlow);
slowAdc.invalidateSamplesCache();
/* Calculates the average values from the ADC samples.*/
for (int i = 0; i < slowAdc.size(); i++) {
adcsample_t value = getAvgAdcValue(i, slowAdc.samples, ADC_BUF_DEPTH_SLOW, slowAdc.size());
adcsample_t prev = slowAdc.values.adc_data[i];
float result = (slowAdcCounter == 0) ? value :
CONFIG(slowAdcAlpha) * value + (1 - CONFIG(slowAdcAlpha)) * prev;
slowAdc.values.adc_data[i] = (adcsample_t)result;
}
slowAdcCounter++;
AdcSubscription::UpdateSubscribers(nowNt);
}
2019-10-08 17:44:59 -07:00
}
};
void addChannel(const char *name, adc_channel_e setting, adc_channel_mode_e mode) {
if (setting == EFI_ADC_NONE) {
return;
}
if (/*type-limited (int)setting < 0 || */(int)setting>=HW_MAX_ADC_INDEX) {
firmwareError(CUSTOM_INVALID_ADC, "Invalid ADC setting %s", name);
return;
}
adcHwChannelEnabled[setting] = mode;
AdcDevice& dev = (mode == ADC_SLOW) ? slowAdc : fastAdc;
dev.enableChannelAndPin(name, setting);
}
void removeChannel(const char *name, adc_channel_e setting) {
2019-04-14 10:19:36 -07:00
(void)name;
if (setting == EFI_ADC_NONE) {
return;
}
adcHwChannelEnabled[setting] = ADC_OFF;
}
static void configureInputs(void) {
memset(adcHwChannelEnabled, 0, sizeof(adcHwChannelEnabled));
2019-12-03 20:55:18 -08:00
/**
* order of analog channels here is totally random and has no meaning
* we also have some weird implementation with internal indices - that all has no meaning, it's just a random implementation
* which does not mean anything.
*/
addChannel("MAP", engineConfiguration->map.sensor.hwChannel, ADC_FAST);
addChannel("MAF", engineConfiguration->mafAdcChannel, ADC_FAST);
addChannel("HIP9011", engineConfiguration->hipOutputChannel, ADC_FAST);
addChannel("Baro Press", engineConfiguration->baroSensor.hwChannel, ADC_SLOW);
2020-03-20 06:53:45 -07:00
addChannel("TPS 1 Primary", engineConfiguration->tps1_1AdcChannel, ADC_SLOW);
addChannel("TPS 1 Secondary", engineConfiguration->tps1_2AdcChannel, ADC_SLOW);
addChannel("TPS 2 Primary", engineConfiguration->tps2_1AdcChannel, ADC_SLOW);
addChannel("TPS 2 Secondary", engineConfiguration->tps2_2AdcChannel, ADC_SLOW);
2020-03-20 06:53:45 -07:00
addChannel("Wastegate Position", engineConfiguration->wastegatePositionSensor, ADC_SLOW);
addChannel("Idle Position Sensor", engineConfiguration->idlePositionSensor, ADC_SLOW);
addChannel("Fuel Level", engineConfiguration->fuelLevelSensor, ADC_SLOW);
addChannel("Acc Pedal1", engineConfiguration->throttlePedalPositionAdcChannel, ADC_SLOW);
addChannel("Acc Pedal2", engineConfiguration->throttlePedalPositionSecondAdcChannel, ADC_SLOW);
addChannel("VBatt", engineConfiguration->vbattAdcChannel, ADC_SLOW);
// not currently used addChannel("Vref", engineConfiguration->vRefAdcChannel, ADC_SLOW);
addChannel("CLT", engineConfiguration->clt.adcChannel, ADC_SLOW);
addChannel("IAT", engineConfiguration->iat.adcChannel, ADC_SLOW);
addChannel("AUX Temp 1", engineConfiguration->auxTempSensor1.adcChannel, ADC_SLOW);
addChannel("AUX Temp 2", engineConfiguration->auxTempSensor2.adcChannel, ADC_SLOW);
2020-09-21 03:10:25 -07:00
addChannel("AUXF#1", engineConfiguration->auxFastSensor1_adcChannel, ADC_FAST);
addChannel("AFR", engineConfiguration->afr.hwChannel, ADC_SLOW);
addChannel("Oil Pressure", engineConfiguration->oilPressure.hwChannel, ADC_SLOW);
2020-09-21 03:10:25 -07:00
addChannel("LFP", engineConfiguration->lowPressureFuel.hwChannel, ADC_SLOW);
addChannel("HFP", engineConfiguration->highPressureFuel.hwChannel, ADC_SLOW);
2020-09-21 03:10:25 -07:00
if (CONFIG(isCJ125Enabled)) {
addChannel("CJ125 UR", engineConfiguration->cj125ur, ADC_SLOW);
addChannel("CJ125 UA", engineConfiguration->cj125ua, ADC_SLOW);
2018-01-22 14:45:10 -08:00
}
2017-08-06 16:43:01 -07:00
for (int i = 0; i < FSIO_ANALOG_INPUT_COUNT ; i++) {
addChannel("FSIOadc", engineConfiguration->fsioAdc[i], ADC_SLOW);
}
setAdcChannelOverrides();
}
static SlowAdcController slowAdcController;
void initAdcInputs() {
scheduleMsg(&logger, "initAdcInputs()");
if (ADC_BUF_DEPTH_FAST > MAX_ADC_GRP_BUF_DEPTH)
firmwareError(CUSTOM_ERR_ADC_DEPTH_FAST, "ADC_BUF_DEPTH_FAST too high");
if (ADC_BUF_DEPTH_SLOW > MAX_ADC_GRP_BUF_DEPTH)
firmwareError(CUSTOM_ERR_ADC_DEPTH_SLOW, "ADC_BUF_DEPTH_SLOW too high");
configureInputs();
// migrate to 'enable adcdebug'
addConsoleActionI("adcdebug", &setAdcDebugReporting);
2019-04-12 17:52:51 -07:00
#if EFI_INTERNAL_ADC
/*
* Initializes the ADC driver.
*/
adcStart(&ADC_SLOW_DEVICE, NULL);
adcStart(&ADC_FAST_DEVICE, NULL);
adcSTM32EnableTSVREFE(); // Internal temperature sensor
#if defined(STM32F7XX)
/* the temperature sensor is internally
* connected to the same input channel as VBAT. Only one conversion,
* temperature sensor or VBAT, must be selected at a time. */
adcSTM32DisableVBATE();
#endif
/* Enable this code only when you absolutly sure
* that there is no possible errors from ADC */
#if 0
/* All ADC use DMA and DMA calls end_cb from its IRQ
* If none of ADC users need error callback - we can disable
* shared ADC IRQ and save some CPU ticks */
if ((adcgrpcfgSlow.error_cb == NULL) &&
(adcgrpcfgFast.error_cb == NULL)
/* TODO: Add ADC3? */) {
nvicDisableVector(STM32_ADC_NUMBER);
}
#endif
2019-04-12 17:52:51 -07:00
#if defined(ADC_CHANNEL_SENSOR)
// Internal temperature sensor, Available on ADC1 only
slowAdc.enableChannel(EFI_ADC_TEMP_SENSOR);
#endif /* ADC_CHANNEL_SENSOR */
slowAdc.init();
// Start the slow ADC thread
slowAdcController.Start();
2017-04-05 19:41:51 -07:00
fastAdc.init();
/*
* Initializes the PWM driver.
*/
#if HAL_USE_GPT
gptStart(EFI_INTERNAL_FAST_ADC_GPT, &fast_adc_config);
gptStartContinuous(EFI_INTERNAL_FAST_ADC_GPT, GPT_PERIOD_FAST);
#endif /* HAL_USE_GPT */
addConsoleActionI("adc", (VoidInt) printAdcValue);
#else
scheduleMsg(&logger, "ADC disabled");
#endif
}
void printFullAdcReportIfNeeded(Logging *logger) {
if (!adcDebugReporting)
return;
printFullAdcReport(logger);
}
#endif /* HAL_USE_ADC */