2020-12-29 04:53:13 -08:00
#!/usr/bin/env sage
2020-12-30 19:35:50 -08:00
# Simplified SWU for a = 0 as described in [WB2019] <https://eprint.iacr.org/2019/403> and
2020-12-29 04:53:13 -08:00
# <https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html#name-simplified-swu-for-ab-0-2>.
import sys
from math import ceil , log
from struct import pack
import hashlib
if sys . version_info < ( 3 , 6 ) :
try :
import sha3
except ImportError :
print ( ' Please run: \n `sage -c " import sys; print(sys.executable) " ` -m pip install pysha3 \n ' )
raise
from hashlib import shake_128
if sys . version_info [ 0 ] == 2 :
range = xrange
as_byte = ord
else :
as_byte = lambda x : x
2020-12-30 19:35:50 -08:00
load ( ' squareroottab.sage ' )
2020-12-29 04:53:13 -08:00
2021-01-01 18:22:01 -08:00
DEBUG = False
2020-12-29 04:53:13 -08:00
# E: a short Weierstrass elliptic curve
def find_z_sswu ( E ) :
( 0 , 0 , 0 , A , B ) = E . a_invariants ( )
F = E . base_field ( )
R . < x > = F [ ] # Polynomial ring over F
g = x ^ 3 + F ( A ) * x + F ( B ) # y^2 = g(x) = x^3 + A * x + B
ctr = F . gen ( )
while True :
for Z_cand in ( F ( ctr ) , F ( - ctr ) ) :
2020-12-30 19:35:50 -08:00
if is_good_Z ( F , g , A , B , Z_cand ) :
2020-12-29 04:53:13 -08:00
return Z_cand
ctr + = 1
2020-12-30 19:35:50 -08:00
def is_good_Z ( F , g , A , B , Z ) :
# Criterion 1: Z is non-square in F.
if Z . is_square ( ) :
return False
2020-12-29 04:53:13 -08:00
2020-12-30 19:35:50 -08:00
# Criterion 2: Z != -1 in F.
if Z == F ( - 1 ) :
return False
# Criterion 3: g(x) - Z is irreducible over F.
if not ( g - Z ) . is_irreducible ( ) :
return False
# Criterion 4: g(B / (Z * A)) is square in F.
if not g ( F ( B ) / ( Z * F ( A ) ) ) . is_square ( ) :
return False
return True
2021-01-01 18:22:01 -08:00
# <https://core.ac.uk/download/pdf/82012348.pdf>
class ChudnovskyPoint :
def __init__ ( self , x , y , z , z2 , z3 ) :
( self . x , self . y , self . z , self . z2 , self . z3 ) = ( x , y , z , z2 , z3 )
def add ( self , other , E , c ) :
# Addition on y^2 = x^3 + Ax + B with Chudnovsky input and output.
# FIXME: should be unified addition.
# <https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-1986-cc-2>
( X1 , Y1 , Z1 , Z1_2 , Z1_3 ) = ( self . x , self . y , self . z , self . z2 , self . z3 )
( X2 , Y2 , Z2 , Z2_2 , Z2_3 ) = ( other . x , other . y , other . z , other . z2 , other . z3 )
U1 = c . mul ( X1 , Z2_2 )
U2 = c . mul ( X2 , Z1_2 )
S1 = c . mul ( Y1 , Z2_3 )
S2 = c . mul ( Y2 , Z1_3 )
P = U2 - U1
R = S2 - S1
P_2 = c . sqr ( P )
P_3 = c . mul ( P_2 , P )
R_2 = c . sqr ( R )
T = U1 + U2
X3 = R_2 - c . mul ( T , P_2 )
Y3 = ( c . mul ( R , - 2 * R_2 + c . mul ( 3 * P_2 , T ) ) - c . mul ( P_3 , S1 + S2 ) ) / 2
Z3 = c . mul ( c . mul ( Z1 , Z2 ) , P )
Z3_2 = c . sqr ( Z3 )
Z3_3 = c . mul ( Z3_2 , Z3 )
R = ChudnovskyPoint ( X3 , Y3 , Z3 , Z3_2 , Z3_3 )
if DEBUG : assert R . to_sage ( E ) == self . to_sage ( E ) + other . to_sage ( E )
return R
def to_sage ( self , E ) :
return E ( ( self . x / self . z2 , self . y / self . z3 ) )
def to_jacobian ( self ) :
return ( self . x , self . y , self . z )
def __repr__ ( self ) :
return " %r : %r : %r : %r : %r " % ( self . x , self . y , self . z , self . z2 , self . z3 )
2020-12-30 19:35:50 -08:00
assert p == 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
assert q == 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001
Fp = GF ( p )
Fq = GF ( q )
2020-12-31 05:45:35 -08:00
E_isop_A = 10949663248450308183708987909873589833737836120165333298109615750520499732811
E_isoq_A = 17413348858408915339762682399132325137863850198379221683097628341577494210225
E_isop_B = 1265
E_isoq_B = 1265
E_isop = EllipticCurve ( Fp , [ E_isop_A , E_isop_B ] )
E_isoq = EllipticCurve ( Fq , [ E_isoq_A , E_isoq_B ] )
E_p = EllipticCurve ( Fp , [ 0 , 5 ] )
E_q = EllipticCurve ( Fq , [ 0 , 5 ] )
2020-12-29 04:53:13 -08:00
k = 128
2020-12-30 19:35:50 -08:00
Lp = ( len ( format ( p , ' b ' ) ) + k + 7 ) / / 8
Lq = ( len ( format ( q , ' b ' ) ) + k + 7 ) / / 8
assert Lp == 48 and Lq == 48
L = Lp
2020-12-31 05:45:35 -08:00
Z_isop = find_z_sswu ( E_isop )
Z_isoq = find_z_sswu ( E_isoq )
assert Z_isop == Mod ( - 13 , p )
assert Z_isoq == Mod ( - 13 , q )
2020-12-30 19:35:50 -08:00
2020-12-31 05:45:35 -08:00
h_p = F_p . g
h_q = F_q . g
2020-12-29 04:53:13 -08:00
def select_z_nz ( s , ifz , ifnz ) :
# This should be constant-time in a real implementation.
return ifz if ( s == 0 ) else ifnz
2021-01-01 16:50:42 -08:00
def map_to_curve_simple_swu ( F , E , Z , u , c ) :
2020-12-29 04:53:13 -08:00
# would be precomputed
2020-12-31 19:36:05 -08:00
h = F . g
2020-12-29 04:53:13 -08:00
( 0 , 0 , 0 , A , B ) = E . a_invariants ( )
mBdivA = - B / A
BdivZA = B / ( Z * A )
2020-12-29 09:52:35 -08:00
Z2 = Z ^ 2
2020-12-31 05:45:35 -08:00
assert ( Z / h ) . is_square ( )
theta = sqrt ( Z / h )
2020-12-29 04:53:13 -08:00
2021-01-01 16:50:42 -08:00
# 1. tv1 = inv0(Z^2 * u^4 + Z * u^2)
# 2. x1 = (-B / A) * (1 + tv1)
# 3. If tv1 == 0, set x1 = B / (Z * A)
# 4. gx1 = x1^3 + A * x1 + B
#
# We use the "Avoiding inversions" optimization in [WB2019, section 4.2]
# (not to be confused with section 4.3):
#
# here [WB2019]
# ------- ---------------------------------
# Z \xi
# u t
# Z * u^2 \xi * t^2 (called u, confusingly)
# x1 X_0(t)
# x2 X_1(t)
# gx1 g(X_0(t))
# gx2 g(X_1(t))
#
# Using the "here" names:
2021-01-01 18:22:01 -08:00
# x1 = N_x1/D = [B*(Z^2 * u^4 + Z * u^2 + 1)] / [-A*(Z^2 * u^4 + Z * u^2]
# gx1 = U/V = [N_x1^3 + A * N_x1 * D^2 + B * D^3] / D^3
2021-01-01 16:50:42 -08:00
# Z and B are small so we don't count multiplication by them as a mul; A is large.
Zu2 = Z * c . sqr ( u )
ta = c . sqr ( Zu2 ) + Zu2
2021-01-01 18:22:01 -08:00
N_x1 = B * ( ta + 1 )
2021-01-01 16:50:42 -08:00
D = c . mul ( - A , ta )
2021-01-01 18:22:01 -08:00
N2_x1 = c . sqr ( N_x1 )
2021-01-01 16:50:42 -08:00
D2 = c . sqr ( D )
D3 = c . mul ( D2 , D )
2021-01-01 18:22:01 -08:00
U = select_z_nz ( ta , BdivZA , c . mul ( N2_x1 + c . mul ( A , D2 ) , N_x1 ) + B * D3 )
2021-01-01 16:50:42 -08:00
V = select_z_nz ( ta , 1 , D3 )
if DEBUG :
2021-01-01 18:22:01 -08:00
x1 = N_x1 / D
2021-01-01 16:50:42 -08:00
gx1 = U / V
tv1 = ( 0 if ta == 0 else 1 / ta )
assert x1 == ( BdivZA if tv1 == 0 else mBdivA * ( 1 + tv1 ) )
assert gx1 == x1 ^ 3 + A * x1 + B
# 5. x2 = Z * u^2 * x1
2021-01-01 18:22:01 -08:00
N_x2 = c . mul ( Zu2 , N_x1 ) # same D
2021-01-01 16:50:42 -08:00
# 6. gx2 = x2^3 + A * x2 + B [optimized out; see below]
# 7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
# 8. Else set x = x2 and y = sqrt(gx2)
( y1 , zero_if_gx1_square ) = F . sarkar_divsqrt ( U , V , c )
# This magic also comes from a generalization of [WB2019, section 4.2].
#
# The Sarkar square root algorithm with input s gives us a square root of
# h * s for free when s is not square, where h is a fixed nonsquare.
# We know that Z/h is a square since both Z and h are nonsquares.
# Precompute \theta as a square root of Z/h, or choose Z = h so that \theta = 1.
#
# We have gx2 = g(Z * u^2 * x1) = Z^3 * u^6 * gx1
# = (Z * u^3)^2 * (Z/h * h * gx1)
# = (Z * \theta * u^3)^2 * (h * gx1)
#
# When gx1 is not square, y1 is a square root of h * gx1, and so Z * \theta * u^3 * y1
# is a square root of gx2. Note that we don't actually need to compute gx2.
y2 = c . mul ( theta , c . mul ( Zu2 , c . mul ( u , y1 ) ) )
if DEBUG and zero_if_gx1_square != 0 :
assert y1 ^ 2 == h * gx1 , ( y1_2 , Z , gx1 )
assert y2 ^ 2 == x2 ^ 3 + A * x2 + B , ( y2 , x2 , A , B )
2021-01-01 18:22:01 -08:00
N_x = select_z_nz ( zero_if_gx1_square , N_x1 , N_x2 )
2021-01-01 16:50:42 -08:00
y = select_z_nz ( zero_if_gx1_square , y1 , y2 )
# 9. If sgn0(u) != sgn0(y), set y = -y
y = select_z_nz ( ( int ( u ) % 2 ) - ( int ( y ) % 2 ) , y , - y )
2021-01-01 18:22:01 -08:00
return ChudnovskyPoint ( c . mul ( N_x , D ) , c . mul ( y , D3 ) , D , D2 , D3 )
2020-12-29 04:53:13 -08:00
# iso_Ep = Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 10949663248450308183708987909873589833737836120165333298109615750520499732811*x + 1265 over Fp
2020-12-29 16:09:26 -08:00
def isop_map_affine ( x , y , c ) :
2020-12-29 04:53:13 -08:00
c . muls + = 2 + 1 + 1 + 2 + 1 + 1 + 2
# batch inversion
c . muls + = 3
c . invs + = 1
2020-12-29 16:09:26 -08:00
Nx = ( ( ( 6432893846517566412420610278260439325191790329320346825767705947633326140075 * x +
23989696149150192365340222745168215001509815558210986772351135915822265203574 ) * x +
10492611921771203378452795982353351666191589197598957448093274638589204800759 ) * x +
12865787693035132824841220556520878650383580658640693651535411895266652280192 )
Dx = ( ( x +
13271109177048389296812780941310096270046944650307955939477485891950613419807 ) * x +
22768321103861051515190775253992702316905399997697804654926324362758820947460 )
Ny = ( ( ( 11793638718615538422771118843477472096184948937087302513907460903994431256804 * x +
11994848074575096182670111372584107500754907779105493386175567957911132601787 ) * x +
28823569610051396102362669851238297121581474897215657071023781420043761726004 ) * x +
1072148974419594402070101713043406554198631721553391137627950991272221023311 ) * y
Dy = ( ( ( x +
5432652610908059517272798285879155923388888734491153551238890455750936314542 ) * x +
10408918692925056833786833257634153023990087029210292532869619559576527581706 ) * x +
28948022309329048855892746252171976963363056481941560715954676764349967629797 )
return ( Nx / Dx , Ny / Dy )
2021-01-01 18:22:01 -08:00
# The same isogeny but with input in Chudnovsky coordinates (Jacobian plus z^2 and z^3)
# and output in Jacobian <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>,
2020-12-30 19:35:50 -08:00
# according to "Avoiding inversions" in [WB2019, section 4.3].
2021-01-01 18:22:01 -08:00
def isop_map_jacobian ( P , c ) :
( x , y , z , z2 , z3 ) = ( P . x , P . y , P . z , P . z2 , P . z3 )
2020-12-29 16:09:26 -08:00
z4 = c . sqr ( z2 )
z6 = c . sqr ( z3 )
Nx = ( ( ( 6432893846517566412420610278260439325191790329320346825767705947633326140075 * x +
23989696149150192365340222745168215001509815558210986772351135915822265203574 * z2 ) * x +
10492611921771203378452795982353351666191589197598957448093274638589204800759 * z4 ) * x +
12865787693035132824841220556520878650383580658640693651535411895266652280192 * z6 )
c . muls + = 6
Dx = ( ( z2 * x +
13271109177048389296812780941310096270046944650307955939477485891950613419807 * z4 ) * x +
22768321103861051515190775253992702316905399997697804654926324362758820947460 * z6 )
c . muls + = 4
Ny = ( ( ( 11793638718615538422771118843477472096184948937087302513907460903994431256804 * x +
11994848074575096182670111372584107500754907779105493386175567957911132601787 * z2 ) * x +
28823569610051396102362669851238297121581474897215657071023781420043761726004 * z4 ) * x +
1072148974419594402070101713043406554198631721553391137627950991272221023311 * z6 ) * y
c . muls + = 7
Dy = ( ( ( x +
5432652610908059517272798285879155923388888734491153551238890455750936314542 * z2 ) * x +
10408918692925056833786833257634153023990087029210292532869619559576527581706 * z4 ) * x +
28948022309329048855892746252171976963363056481941560715954676764349967629797 * z6 ) * z3
c . muls + = 6
zo = c . mul ( Dx , Dy )
xo = c . mul ( c . mul ( Nx , Dy ) , zo )
yo = c . mul ( c . mul ( Ny , Dx ) , c . sqr ( zo ) )
assert isop_map_affine ( x / z2 , y / z3 , Cost ( ) ) == ( xo / zo ^ 2 , yo / zo ^ 3 )
return ( xo , yo , zo )
2020-12-29 04:53:13 -08:00
def expand_message_xof ( msg , DST , len_in_bytes ) :
assert len ( DST ) < 256
len_in_bytes = int ( len_in_bytes )
# This is horrible but matches the reference code.
xof = shake_128 ( )
xof . update ( msg )
xof . update ( pack ( " >H " , len_in_bytes ) )
xof . update ( pack ( " B " , len ( DST ) ) )
xof . update ( DST )
return xof . digest ( len_in_bytes )
def hash_to_field ( msg , DST , count ) :
uniform_bytes = expand_message_xof ( msg , DST , L * count )
return [ Mod ( OS2IP ( uniform_bytes [ L * i : L * ( i + 1 ) ] ) , p ) for i in range ( count ) ]
def OS2IP ( bs ) :
acc = 0
for b in bs :
acc = ( acc << 8 ) + as_byte ( b )
return acc
2020-12-29 16:09:26 -08:00
def hash_to_curve_jacobian ( msg , DST ) :
c = Cost ( )
us = hash_to_field ( msg , DST , 2 )
#print("u = ", u)
2021-01-01 18:22:01 -08:00
Q0 = map_to_curve_simple_swu ( F_p , E_isop , Z_isop , us [ 0 ] , c )
Q1 = map_to_curve_simple_swu ( F_p , E_isop , Z_isop , us [ 1 ] , c )
2021-01-01 16:50:42 -08:00
2021-01-01 18:22:01 -08:00
R = Q0 . add ( Q1 , E_isop , c )
2020-12-29 16:09:26 -08:00
# no cofactor clearing needed since Pallas and Vesta are prime-order
2021-01-01 18:22:01 -08:00
( Px , Py , Pz ) = isop_map_jacobian ( R , c )
2020-12-29 16:09:26 -08:00
P = E_p ( ( Px / Pz ^ 2 , Py / Pz ^ 3 ) )
2020-12-29 04:53:13 -08:00
return ( P , c )
2020-12-31 05:45:35 -08:00
print ( hash_to_curve_jacobian ( " hello " , " blah " ) )
print ( " " )
2020-12-29 04:53:13 -08:00
iters = 100
for i in range ( iters ) :
2021-01-01 18:22:01 -08:00
( R , cost ) = hash_to_curve_jacobian ( pack ( " >I " , i ) , " blah " )
print ( R , cost )