ChibiOS/os/hal/platforms/STM32/i2c_lld.c

623 lines
19 KiB
C
Raw Normal View History

/**
* @file STM32/i2c_lld.c
* @brief STM32 I2C subsystem low level driver source. Slave mode not implemented.
* @addtogroup STM32_I2C
* @{
*/
#include "ch.h"
#include "hal.h"
#include "i2c_lld.h"
#if HAL_USE_I2C || defined(__DOXYGEN__)
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/** @brief I2C1 driver identifier.*/
#if STM32_I2C_USE_I2C1 || defined(__DOXYGEN__)
I2CDriver I2CD1;
#endif
/** @brief I2C2 driver identifier.*/
#if STM32_I2C_USE_I2C2 || defined(__DOXYGEN__)
I2CDriver I2CD2;
#endif
/*===========================================================================*/
/* Driver local variables. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
static uint32_t i2c_get_event(I2CDriver *i2cp){
uint32_t regSR1 = i2cp->id_i2c->SR1;
uint32_t regSR2 = i2cp->id_i2c->SR2;
/* return the last event value from I2C status registers */
return (I2C_EV_MASK & (regSR1 | (regSR2 << 16)));
}
static void i2c_serve_event_interrupt(I2CDriver *i2cp) {
#define txBuffp (i2cp->txBuffp)
#define rxBuffp (i2cp->rxBuffp)
I2C_TypeDef *dp = i2cp->id_i2c;
switch(i2c_get_event(i2cp)) {
case I2C_EV5_MASTER_MODE_SELECT:
i2cp->flags &= ~I2C_FLG_HEADER_SENT;
dp->DR = i2cp->slave_addr1;
break;
case I2C_EV9_MASTER_ADDR_10BIT:
if(i2cp->flags & I2C_FLG_MASTER_RECEIVER) {
i2cp->slave_addr1 |= 0x01;
i2cp->flags |= I2C_FLG_HEADER_SENT;
// i2cp->id_i2c->CR1 = (i2cp->id_i2c->CR1 & (~I2C_CR1_ACK)) | I2C_CR1_STOP;
}
dp->DR = i2cp->slave_addr2;
break;
//------------------------------------------------------------------------
// Master Transmitter ----------------------------------------------------
//------------------------------------------------------------------------
case I2C_EV6_MASTER_TRA_MODE_SELECTED:
if(i2cp->flags & I2C_FLG_HEADER_SENT){
dp->CR1 |= I2C_CR1_START; // re-send the start in 10-Bit address mode
break;
}
//Initialize the transmit buffer pointer
txBuffp = (uint8_t*)i2cp->id_slave_config->txbuf;
i2cp->txbytes--;
/* If no further data to be sent, disable the I2C ITBUF in order to not have a TxE interrupt */
if(i2cp->txbytes == 0) {
dp->CR2 &= (uint16_t)~I2C_CR2_ITBUFEN;
}
//EV8_1 write the first data
dp->DR = *txBuffp;
txBuffp++;
break;
case I2C_EV8_MASTER_BYTE_TRANSMITTING:
if(i2cp->txbytes > 0) {
i2cp->txbytes--;
if(i2cp->txbytes == 0) {
/* If no further data to be sent, disable the ITBUF in order to not have a TxE interrupt */
dp->CR2 &= (uint16_t)~I2C_CR2_ITBUFEN;
}
dp->DR = *txBuffp;
txBuffp++;
}
break;
case I2C_EV8_2_MASTER_BYTE_TRANSMITTED:
/* if nothing to read then generate stop */
if (i2cp->rxbytes == 0){
dp->CR1 |= I2C_CR1_STOP; // stop generation
/* Disable ITEVT In order to not have again a BTF IT */
dp->CR2 &= (uint16_t)~I2C_CR2_ITEVTEN;
/* Portable I2C ISR code defined in the high level driver, note, it is a macro.*/
_i2c_isr_code(i2cp, i2cp->id_slave_config);
}
else{
/* Disable ITEVT In order to not have again a BTF IT */
dp->CR2 &= (uint16_t)~I2C_CR2_ITEVTEN;
/* send restart and begin reading operations */
i2c_lld_master_receive(i2cp, i2cp->slave_addr, i2cp->rxbytes);
}
break;
//------------------------------------------------------------------------
// Master Receiver -------------------------------------------------------
//------------------------------------------------------------------------
case I2C_EV6_MASTER_REC_MODE_SELECTED:
chSysLockFromIsr();
switch(i2cp->flags & EV6_SUBEV_MASK) {
case I2C_EV6_3_MASTER_REC_1BTR_MODE_SELECTED: // only an single byte to receive
/* Clear ACK */
dp->CR1 &= (uint16_t)~I2C_CR1_ACK;
/* Program the STOP */
dp->CR1 |= I2C_CR1_STOP;
break;
case I2C_EV6_1_MASTER_REC_2BTR_MODE_SELECTED: // only two bytes to receive
/* Clear ACK */
dp->CR1 &= (uint16_t)~I2C_CR1_ACK;
/* Disable the ITBUF in order to have only the BTF interrupt */
dp->CR2 &= (uint16_t)~I2C_CR2_ITBUFEN;
break;
}
chSysUnlockFromIsr();
/* Initialize receive buffer pointer */
rxBuffp = i2cp->id_slave_config->rxbuf;
break;
case I2C_EV7_MASTER_REC_BYTE_RECEIVED:
if(i2cp->rxbytes != 3) {
/* Read the data register */
*rxBuffp = dp->DR;
rxBuffp++;
i2cp->rxbytes--;
switch(i2cp->rxbytes){
case 3:
/* Disable the ITBUF in order to have only the BTF interrupt */
dp->CR2 &= (uint16_t)~I2C_CR2_ITBUFEN;
i2cp->flags |= I2C_FLG_3BTR;
break;
case 0:
/* Portable I2C ISR code defined in the high level driver, note, it is a macro.*/
_i2c_isr_code(i2cp, i2cp->id_slave_config);
break;
}
}
// when remaining 3 bytes do nothing, wait until RXNE and BTF are set (until 2 bytes are received)
break;
case I2C_EV7_MASTER_REC_BYTE_QUEUED:
switch(i2cp->flags & EV7_SUBEV_MASK) {
case I2C_EV7_2_MASTER_REC_3BYTES_TO_PROCESS:
// DataN-2 and DataN-1 are received
chSysLockFromIsr();
dp->CR2 |= I2C_CR2_ITBUFEN;
/* Clear ACK */
dp->CR1 &= (uint16_t)~I2C_CR1_ACK;
/* Read the DataN-2*/
*rxBuffp = dp->DR; //This clear the RXE & BFT flags and launch the DataN reception in the shift register (ending the SCL stretch)
rxBuffp++;
/* Program the STOP */
dp->CR1 |= I2C_CR1_STOP;
/* Read the DataN-1 */
*rxBuffp = dp->DR;
chSysUnlockFromIsr();
rxBuffp++;
/* Decrement the number of readed bytes */
i2cp->rxbytes -= 2;
i2cp->flags = 0;
// ready for read DataN on the next EV7
break;
case I2C_EV7_3_MASTER_REC_2BYTES_TO_PROCESS: // only for case of two bytes to be received
// DataN-1 and DataN are received
chSysLockFromIsr();
/* Program the STOP */
dp->CR1 |= I2C_CR1_STOP;
/* Read the DataN-1*/
*rxBuffp = dp->DR;
chSysUnlockFromIsr();
rxBuffp++;
/* Read the DataN*/
*rxBuffp = dp->DR;
i2cp->rxbytes = 0;
i2cp->flags = 0;
/* Portable I2C ISR code defined in the high level driver, note, it is a macro.*/
_i2c_isr_code(i2cp, i2cp->id_slave_config);
break;
}
break;
}
#undef rxBuffp
#undef txBuffp
}
static void i2c_serve_error_interrupt(I2CDriver *i2cp) {
i2cflags_t flags;
I2C_TypeDef *reg;
reg = i2cp->id_i2c;
flags = I2CD_NO_ERROR;
if(reg->SR1 & I2C_SR1_BERR) { // Bus error
reg->SR1 &= ~I2C_SR1_BERR;
flags |= I2CD_BUS_ERROR;
}
if(reg->SR1 & I2C_SR1_ARLO) { // Arbitration lost
reg->SR1 &= ~I2C_SR1_ARLO;
flags |= I2CD_ARBITRATION_LOST;
}
if(reg->SR1 & I2C_SR1_AF) { // Acknowledge fail
reg->SR1 &= ~I2C_SR1_AF;
reg->CR1 |= I2C_CR1_STOP; // setting stop bit
flags |= I2CD_ACK_FAILURE;
}
if(reg->SR1 & I2C_SR1_OVR) { // Overrun
reg->SR1 &= ~I2C_SR1_OVR;
flags |= I2CD_OVERRUN;
}
if(reg->SR1 & I2C_SR1_PECERR) { // PEC error
reg->SR1 &= ~I2C_SR1_PECERR;
flags |= I2CD_PEC_ERROR;
}
if(reg->SR1 & I2C_SR1_TIMEOUT) { // SMBus Timeout
reg->SR1 &= ~I2C_SR1_TIMEOUT;
flags |= I2CD_TIMEOUT;
}
if(reg->SR1 & I2C_SR1_SMBALERT) { // SMBus alert
reg->SR1 &= ~I2C_SR1_SMBALERT;
flags |= I2CD_SMB_ALERT;
}
if(flags != I2CD_NO_ERROR) {
// send communication end signal
_i2c_isr_code(i2cp, i2cp->id_slave_config);
chSysLockFromIsr();
i2cAddFlagsI(i2cp, flags);
chSysUnlockFromIsr();
}
}
#if STM32_I2C_USE_I2C1 || defined(__DOXYGEN__)
/**
* @brief I2C1 event interrupt handler.
*/
CH_IRQ_HANDLER(VectorBC) {
CH_IRQ_PROLOGUE();
i2c_serve_event_interrupt(&I2CD1);
CH_IRQ_EPILOGUE();
}
/**
* @brief I2C1 error interrupt handler.
*/
CH_IRQ_HANDLER(VectorC0) {
CH_IRQ_PROLOGUE();
i2c_serve_error_interrupt(&I2CD1);
CH_IRQ_EPILOGUE();
}
#endif
#if STM32_I2C_USE_I2C2 || defined(__DOXYGEN__)
/**
* @brief I2C2 event interrupt handler.
*/
CH_IRQ_HANDLER(VectorC4) {
CH_IRQ_PROLOGUE();
i2c_serve_event_interrupt(&I2CD2);
CH_IRQ_EPILOGUE();
}
/**
* @brief I2C2 error interrupt handler.
*/
CH_IRQ_HANDLER(VectorC8) {
CH_IRQ_PROLOGUE();
i2c_serve_error_interrupt(&I2CD2);
CH_IRQ_EPILOGUE();
}
#endif
/**
* @brief Low level I2C driver initialization.
*/
void i2c_lld_init(void) {
#if STM32_I2C_USE_I2C1
RCC->APB1RSTR = RCC_APB1RSTR_I2C1RST; // reset I2C 1
RCC->APB1RSTR = 0;
i2cObjectInit(&I2CD1);
I2CD1.id_i2c = I2C1;
#endif
#if STM32_I2C_USE_I2C2
RCC->APB1RSTR = RCC_APB1RSTR_I2C2RST; // reset I2C 2
RCC->APB1RSTR = 0;
i2cObjectInit(&I2CD2);
I2CD2.id_i2c = I2C2;
#endif
}
/**
* @brief Configures and activates the I2C peripheral.
*
* @param[in] i2cp pointer to the @p I2CDriver object
*/
void i2c_lld_start(I2CDriver *i2cp) {
/* If in stopped state then enables the I2C clock.*/
if (i2cp->id_state == I2C_STOP) {
#if STM32_I2C_USE_I2C1
if (&I2CD1 == i2cp) {
NVICEnableVector(I2C1_EV_IRQn, STM32_I2C_I2C1_IRQ_PRIORITY);
NVICEnableVector(I2C1_ER_IRQn, STM32_I2C_I2C1_IRQ_PRIORITY);
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // I2C 1 clock enable
}
#endif
#if STM32_I2C_USE_I2C2
if (&I2CD2 == i2cp) {
NVICEnableVector(I2C2_EV_IRQn, STM32_I2C_I2C2_IRQ_PRIORITY);
NVICEnableVector(I2C2_ER_IRQn, STM32_I2C_I2C2_IRQ_PRIORITY);
RCC->APB1ENR |= RCC_APB1ENR_I2C2EN; // I2C 2 clock enable
}
#endif
}
/* I2C setup.*/
i2cp->id_i2c->CR1 = I2C_CR1_SWRST; // reset i2c peripherial
i2cp->id_i2c->CR1 = 0;
i2c_lld_set_clock(i2cp);
i2c_lld_set_opmode(i2cp);
i2cp->id_i2c->CR2 |= I2C_CR2_ITERREN | I2C_CR2_ITEVTEN | I2C_CR2_ITBUFEN;// enable interrupts
i2cp->id_i2c->CR1 |= 1; // enable interface
}
void i2c_lld_reset(I2CDriver *i2cp){
chDbgCheck((i2cp->id_state == I2C_STOP)||(i2cp->id_state == I2C_READY),
"i2c_lld_reset: invalid state");
RCC->APB1RSTR = RCC_APB1RSTR_I2C1RST; // reset I2C 1
RCC->APB1RSTR = 0;
}
/**
* @brief Set clock speed.
*
* @param[in] i2cp pointer to the @p I2CDriver object
*/
void i2c_lld_set_clock(I2CDriver *i2cp) {
volatile uint16_t regCCR, regCR2, freq, clock_div;
volatile uint16_t pe_bit_saved;
int32_t clock_speed = i2cp->id_config->clock_speed;
i2cdutycycle_t duty = i2cp->id_config->duty_cycle;
chDbgCheck((i2cp != NULL) && (clock_speed > 0) && (clock_speed <= 4000000),
"i2c_lld_set_clock");
/*---------------------------- CR2 Configuration ------------------------*/
/* Get the I2Cx CR2 value */
regCR2 = i2cp->id_i2c->CR2;
/* Clear frequency FREQ[5:0] bits */
regCR2 &= (uint16_t)~I2C_CR2_FREQ;
/* Set frequency bits depending on pclk1 value */
freq = (uint16_t)(STM32_PCLK1 / 1000000);
chDbgCheck((freq >= 2) && (freq <= 36),
"i2c_lld_set_clock() : Peripheral clock freq. out of range");
regCR2 |= freq;
i2cp->id_i2c->CR2 = regCR2;
/*---------------------------- CCR Configuration ------------------------*/
pe_bit_saved = (i2cp->id_i2c->CR1 & I2C_CR1_PE);
/* Disable the selected I2C peripheral to configure TRISE */
i2cp->id_i2c->CR1 &= (uint16_t)~I2C_CR1_PE;
/* Clear F/S, DUTY and CCR[11:0] bits */
regCCR = 0;
clock_div = I2C_CCR_CCR;
/* Configure clock_div in standard mode */
if (clock_speed <= 100000) {
chDbgAssert(duty == STD_DUTY_CYCLE,
"i2c_lld_set_clock(), #1", "Invalid standard mode duty cycle");
/* Standard mode clock_div calculate: Tlow/Thigh = 1/1 */
clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 2));
/* Test if CCR value is under 0x4, and set the minimum allowed value */
if (clock_div < 0x04) clock_div = 0x04;
/* Set clock_div value for standard mode */
regCCR |= (clock_div & I2C_CCR_CCR);
/* Set Maximum Rise Time for standard mode */
i2cp->id_i2c->TRISE = freq + 1;
}
/* Configure clock_div in fast mode */
else if(clock_speed <= 400000) {
chDbgAssert((duty == FAST_DUTY_CYCLE_2) || (duty == FAST_DUTY_CYCLE_16_9),
"i2c_lld_set_clock(), #2", "Invalid fast mode duty cycle");
if(duty == FAST_DUTY_CYCLE_2) {
/* Fast mode clock_div calculate: Tlow/Thigh = 2/1 */
clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 3));
}
else if(duty == FAST_DUTY_CYCLE_16_9) {
/* Fast mode clock_div calculate: Tlow/Thigh = 16/9 */
clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 25));
/* Set DUTY bit */
regCCR |= I2C_CCR_DUTY;
}
/* Test if CCR value is under 0x1, and set the minimum allowed value */
if(clock_div < 0x01) clock_div = 0x01;
/* Set clock_div value and F/S bit for fast mode*/
regCCR |= (I2C_CCR_FS | (clock_div & I2C_CCR_CCR));
/* Set Maximum Rise Time for fast mode */
i2cp->id_i2c->TRISE = (freq * 300 / 1000) + 1;
}
chDbgAssert((clock_div <= I2C_CCR_CCR),
"i2c_lld_set_clock(), #3", "Too low clock clock speed selected");
/* Write to I2Cx CCR */
i2cp->id_i2c->CCR = regCCR;
/* restore the I2C peripheral enabled state */
i2cp->id_i2c->CR1 |= pe_bit_saved;
}
/**
* @brief Set operation mode of I2C hardware.
*
* @param[in] i2cp pointer to the @p I2CDriver object
*/
void i2c_lld_set_opmode(I2CDriver *i2cp) {
i2copmode_t opmode = i2cp->id_config->op_mode;
uint16_t regCR1;
/*---------------------------- CR1 Configuration ------------------------*/
/* Get the I2Cx CR1 value */
regCR1 = i2cp->id_i2c->CR1;
switch(opmode){
case OPMODE_I2C:
regCR1 &= (uint16_t)~(I2C_CR1_SMBUS|I2C_CR1_SMBTYPE);
break;
case OPMODE_SMBUS_DEVICE:
regCR1 |= I2C_CR1_SMBUS;
regCR1 &= (uint16_t)~(I2C_CR1_SMBTYPE);
break;
case OPMODE_SMBUS_HOST:
regCR1 |= (I2C_CR1_SMBUS|I2C_CR1_SMBTYPE);
break;
}
/* Write to I2Cx CR1 */
i2cp->id_i2c->CR1 = regCR1;
}
/**
* @brief Set own address.
*
* @param[in] i2cp pointer to the @p I2CDriver object
*/
void i2c_lld_set_own_address(I2CDriver *i2cp) {
//TODO: dual address mode
/*---------------------------- OAR1 Configuration -----------------------*/
i2cp->id_i2c->OAR1 |= 1 << 14;
if (&(i2cp->id_config->own_addr_10) == NULL){// only 7-bit address
i2cp->id_i2c->OAR1 &= (~I2C_OAR1_ADDMODE);
i2cp->id_i2c->OAR1 |= i2cp->id_config->own_addr_7 << 1;
}
else {
chDbgAssert((i2cp->id_config->own_addr_10 < 1024),
"i2c_lld_set_own_address(), #1", "10-bit address longer then 10 bit")
i2cp->id_i2c->OAR1 |= I2C_OAR1_ADDMODE;
i2cp->id_i2c->OAR1 |= i2cp->id_config->own_addr_10;
}
}
/**
* @brief Deactivates the I2C peripheral.
*
* @param[in] i2cp pointer to the @p I2CDriver object
*/
void i2c_lld_stop(I2CDriver *i2cp) {
/* If in ready state then disables the I2C clock.*/
if (i2cp->id_state == I2C_READY) {
#if STM32_I2C_USE_I2C1
if (&I2CD1 == i2cp) {
NVICDisableVector(I2C1_EV_IRQn);
NVICDisableVector(I2C1_ER_IRQn);
RCC->APB1ENR &= ~RCC_APB1ENR_I2C1EN;
}
#endif
#if STM32_I2C_USE_I2C2
if (&I2CD2 == i2cp) {
NVICDisableVector(I2C2_EV_IRQn);
NVICDisableVector(I2C2_ER_IRQn);
RCC->APB1ENR &= ~RCC_APB1ENR_I2C2EN;
}
#endif
}
i2cp->id_state = I2C_STOP;
}
/**
* @brief Transmits data ever the I2C bus as master.
*
* @param[in] i2cp pointer to the @p I2CDriver object
* @param[in] slave_addr Slave device address. Bits 0-9 contain slave
* device address. Bit 15 must be set to 1 if 10-bit
* addressing modes used. Otherwise keep it cleared.
* Bits 10-14 unused.
* @param[in] txbytes number of bytes to be transmited
* @param[in] rxbytes number of bytes to be received
*
*/
void i2c_lld_master_transmit(I2CDriver *i2cp, uint16_t slave_addr, size_t txbytes, size_t rxbytes) {
i2cp->slave_addr = slave_addr;
i2cp->txbytes = txbytes;
i2cp->rxbytes = rxbytes;
// enable ERR, EVT & BUF ITs
i2cp->id_i2c->CR2 |= (I2C_CR2_ITERREN|I2C_CR2_ITEVTEN|I2C_CR2_ITBUFEN);
i2cp->id_i2c->CR1 &= ~I2C_CR1_POS;
if(slave_addr & 0x8000){// 10-bit mode used
// add the two msb of 10-bit address to the header
i2cp->slave_addr1 = ((slave_addr >>7) & 0x0006);
// add the header bits with LSB = 0 -> write
i2cp->slave_addr1 |= 0xF0;
// the remaining 8 bit of 10-bit address
i2cp->slave_addr2 = slave_addr & 0x00FF;
}
else{
// LSB = 0 -> write
i2cp->slave_addr1 = ((slave_addr <<1) & 0x00FE);
}
i2cp->flags = 0;
i2cp->errors = 0;
i2cp->id_i2c->CR1 |= I2C_CR1_START; // send start bit
#if !I2C_USE_WAIT
/* Wait until the START condition is generated on the bus:
* the START bit is cleared by hardware */
uint32_t timeout = 0xfffff;
while((i2cp->id_i2c->CR1 & I2C_CR1_START) && timeout--)
;
#endif /* I2C_USE_WAIT */
}
/**
* @brief Receives data from the I2C bus.
*
* @param[in] i2cp pointer to the @p I2CDriver object
* @param[in] slave_addr Slave device address. Bits 0-9 contain slave
* device address. Bit 15 must be set to 1 if 10-bit
* addressing modes used. Otherwise keep it cleared.
* Bits 10-14 unused.
* @param[in] txbytes number of bytes to be transmited
* @param[in] rxbytes number of bytes to be received
*
*/
void i2c_lld_master_receive(I2CDriver *i2cp, uint16_t slave_addr, size_t rxbytes){
i2cp->slave_addr = slave_addr;
i2cp->rxbytes = rxbytes;
// enable ERR, EVT & BUF ITs
i2cp->id_i2c->CR2 |= (I2C_CR2_ITERREN|I2C_CR2_ITEVTEN|I2C_CR2_ITBUFEN);
i2cp->id_i2c->CR1 |= I2C_CR1_ACK; // acknowledge returned
i2cp->id_i2c->CR1 &= ~I2C_CR1_POS;
if(slave_addr & 0x8000){// 10-bit mode used
// add the two msb of 10-bit address to the header
i2cp->slave_addr1 = ((slave_addr >>7) & 0x0006);
// add the header bits (the LSB -> 1 will be add to second
i2cp->slave_addr1 |= 0xF0;
// the remaining 8 bit of 10-bit address
i2cp->slave_addr2 = slave_addr & 0x00FF;
}
else{
// LSB = 1 -> receive
i2cp->slave_addr1 = ((slave_addr <<1) | 0x01);
}
i2cp->flags = I2C_FLG_MASTER_RECEIVER;
i2cp->errors = 0;
// Only one byte to be received
if(i2cp->rxbytes == 1) {
i2cp->flags |= I2C_FLG_1BTR;
}
// Only two bytes to be received
else if(i2cp->rxbytes == 2) {
i2cp->flags |= I2C_FLG_2BTR;
i2cp->id_i2c->CR1 |= I2C_CR1_POS; // Acknowledge Position
}
i2cp->id_i2c->CR1 |= I2C_CR1_START; // send start bit
#if !I2C_USE_WAIT
/* Wait until the START condition is generated on the bus:
* the START bit is cleared by hardware */
uint32_t timeout = 0xfffff;
while((i2cp->id_i2c->CR1 & I2C_CR1_START) && timeout--)
;
#endif /* I2C_USE_WAIT */
}
#endif // HAL_USE_I2C