The MAF based fueling of rusEFI is still undergoing development, the current status has the fueling functioning correctly but presents a few tuning challenges due to TunerStudio integration and the Spark Table still being reliant on the old engine load math.
The implementation of the MAF in rusEFI is intended to replicate the functionality of OEM systems and as such is more complex than some other systems.
The foundation of the MAF system is the Mass Air Flow sensor itself, this is a device using a hot wire, hot film or vane to directly measure the flow of air into the engine.
Obviously this sensor does not give out an airflow value, it gives us a voltage, current or PWM signal that represents the flow. rusEFI can interpret a voltage or current MAF at this time via a transfer function table.
In rusEFI we use a correction factor table to modify this measured air mass to allow correction of any errors in the measurement due to dynamic air flow effects.
To do this we need to have a "load" value that allows us to have a Load Vs Speed fuel table.
To tune rusEFI using the MAF is probably the quickest and easiest method provided you have a working MAF sensor and the correct information to input in the Transfer Function Table.
For a first start a value of 14 is perfectly acceptable for gasoline.
This table is the primary source of the desired fuel mixture, it will be this table that is tuned to decide the engines target AFR.
A future update will make this fueling table dynamic so that an input % of ethanol in the main fueling dialog will change the fuel density and thus the required fuel mass injected. The result of this will be that users can leave this table tuned as though it were for pure gasoline (14.7:1 stoiciometric) and the % ethanol input will make sure the fuelling stays at the same Lambda value.
This has the advantage of working well with aftermarket wideband controllers that generally work in AFR using pure gasoline as the standard.
Before starting the engine for the first time it is wise to ensure the Fuel Table is filled with values of "100", a value of 100 means that the fuel calculation uses 100% of its measured air mass to decide on the fuel injection pulse.
Tuning this table will adjust for dynamic airflow effects that happen in the inlet of an engine and will allow small (or large but hopefully not) corrections to the fuel injection which may be required to have the engine meet it's desired air/fuel target.
This table should only be tuned if the engine is not meeting the desired air/fuel target under relatively steady state conditions (i.e. without any acceleration enrichment or overrun fuel cut).